login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n).
5

%I #11 Mar 30 2012 18:37:34

%S 1,-3,-9,20,45,0,-151,-231,0,140,1107,2052,49,-1305,0,-15004,-28260,0,

%T 17710,0,81,324040,589953,0,-375570,-1089,0,-124124,-10659705,

%U -19764180,-121,12605358,0,0,4158315,0,567552368,1052295189,-780030,-669901660,0,0,-221399431,-85965,0

%N G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n).

%C a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers.

%H Paul D. Hanna, <a href="/A203861/b203861.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A000204(n) * x^n/n ).

%e G.f.: A(x) = 1 - 3*x - 9*x^2 + 20*x^3 + 45*x^4 - 151*x^6 - 231*x^7 +...

%e -log(A(x))/3 = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +...

%e The g.f. equals the product:

%e A(x) = (1-x-x^2)^3 * (1-3*x^2+x^4)^3 * (1-4*x^3-x^6)^3 * (1-7*x^4+x^8)^3 * (1-11*x^5-x^10)^3 * (1-18*x^6+x^12)^3 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 *...

%e Positions of zeros form A020757:

%e [5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...]

%e which are numbers that are not the sum of two triangular numbers.

%o (PARI) /* Subroutine used in PARI programs below: */

%o {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o (PARI) {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}

%o (PARI) {a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}

%Y Cf. A203860, A203850, A156234, A020757.

%K sign

%O 0,2

%A _Paul D. Hanna_, Jan 07 2012