The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187150 Expansion of psi(-x)^4 / chi(-x)^2 in powers of x where psi(), chi() are Ramanujan theta functions. 3
 1, -2, 1, -2, 0, 4, 1, 2, -5, 0, -5, 4, 1, -2, -5, 0, 7, 4, 7, 0, -4, -10, 7, -8, 0, 4, 0, -8, 2, 0, 1, -2, 0, 2, 0, 14, 7, 0, -5, 10, -11, -8, -10, -2, 0, 10, -4, 4, 0, 0, -5, -8, -11, 10, 0, 0, 14, -2, 20, 0, -11, 4, 13, 2, -5, -14, 0, -14, 13, 0, -11, -14, 8, -2, 0, 10, 13, -18, 0, 0, -5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-7/12) * (eta(q) * eta(q^4)^2 / eta(q^2))^2 in powers of q. Euler transform of period 4 sequence [ -2, 0, -2, -4, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 288 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187149. EXAMPLE G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^5 + x^6 + 2*x^7 - 5*x^8 - 5*x^10 + ... G.f. = q^7 - 2*q^19 + q^31 - 2*q^43 + 4*q^67 + q^79 + 2*q^91 - 5*q^103 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^4]^2 / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *) a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) EllipticTheta[ 2, Pi/4, x^(1/2)]^4 / QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A))^2, n))}; CROSSREFS Cf. A187149. Sequence in context: A257873 A229817 A080966 * A023895 A070963 A174064 Adjacent sequences:  A187147 A187148 A187149 * A187151 A187152 A187153 KEYWORD sign AUTHOR Michael Somos, Mar 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 23:25 EDT 2021. Contains 346273 sequences. (Running on oeis4.)