Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Dec 22 2020 10:04:52
%S 1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,1,0,2,0,2,2,2,0,3,1,3,2,4,1,5,2,5,4,
%T 6,4,9,3,8,7,10,6,13,7,13,12,16,10,20,13,22,19,24,18,32,23,34,30,37,
%U 30,49,37,50,47,58,51,73,58,77,74,89,80,108,91,116
%N Number of strict integer partitions of n containing no 1's or prime powers.
%H Vaclav Kotesovec, <a href="/A321665/b321665.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..500 from Fausto A. C. Cariboni)
%F G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - _Joerg Arndt_, Dec 22 2020
%e The a(36) = 9 strict integer partitions:
%e (36)
%e (30,6)
%e (21,15)
%e (22,14)
%e (24,12)
%e (26,10)
%e (18,12,6)
%e (20,10,6)
%e (14,12,10)
%t nn=100;
%t ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,2,nn}];
%t CoefficientList[Series[ser,{x,0,nn}],x]
%Y Cf. A000607, A000961, A001597, A002095, A023893, A023894, A096258, A246655, A321346, A321347, A321378, A322452, A322454.
%K nonn
%O 0,19
%A _Gus Wiseman_, Dec 11 2018