login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055546 a(n) = (-1)^(n+1) * 2^n * n!^2. 6
-1, 2, -16, 288, -9216, 460800, -33177600, 3251404800, -416179814400, 67421129932800, -13484225986560000, 3263182688747520000, -939796614359285760000, 317651255653438586880000, -124519292216147926056960000, 56033681497266566725632000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Coefficient of the Cayley-Menger determinant of order n.

A roller coaster has n rows of seats, each of which has room for two people.  |a(n)| is the number of ways n men and n women can be seated with a man and a woman in each row. - Geoffrey Critzer, Dec 17 2011

The o.g.f. of 1/a(n) is -BesselI(0,i*sqrt(2*x)), with i the imaginary unit. See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 10 2012

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..100

Usman A. Khan, Soummya Kar and Jose M. F. Moura, A novel geometric approach towards a linear theory for sensor localization, 2013.

Alan L. Mackay, On the regular heptagon, J. Math. Chemistry, vol. 21, 1997, 197-209.

Eric Weisstein's World of Mathematics, Cayley-Menger Determinant.

FORMULA

E.g.f.: -arcsinh(x/sqrt(2))^2. - Vladeta Jovovic, Aug 30 2004

Sum_{n>=0} |a(n)|/(2*n+1)! = Pi/2. - Daniel Suteu, Feb 06 2017

a(n) = (-1)^(n+1) * A000079(n) * A001044(n). - Terry D. Grant, May 21 2017

From Amiram Eldar, Nov 18 2020: (Start)

Sum_{n>=0} 1/a(n) = (-1) * A334383.

Sum_{n>=0} (-1)^(n+1)/a(n) = A334381. (End)

MATHEMATICA

Table[(-1)^(n+1)2^n n!^2, {n, 0, 20}]

PROG

(PARI) a(n)={(-1)^(n+1) * 2^n * n!^2} \\ Andrew Howroyd, Nov 07 2019

CROSSREFS

Cf. A000079, A001044, A019669, A334381, A334383.

Row of A340591 (in absolute values).

Sequence in context: A102599 A123744 A136796 * A009549 A254744 A009795

Adjacent sequences:  A055543 A055544 A055545 * A055547 A055548 A055549

KEYWORD

sign

AUTHOR

Eric W. Weisstein

EXTENSIONS

Terms a(14) and beyond from Andrew Howroyd, Nov 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 08:38 EST 2021. Contains 341781 sequences. (Running on oeis4.)