Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 22 2014 02:01:02
%S 0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,2,1,1,
%T 0,0,0,1,1,0,2,2,1,2,2,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,2,0,
%U 0,2,0,0,3,0,0,2,0,0,2,0,0,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,0,0,0,1,1
%N Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.
%D B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 118.
%e 0; 0,0,0; 0,0,1,0,0; 0,1,1,0,1,1,0; ...
%p with(numtheory): T := proc(i,j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1,j-2)+T(i-1,j-1)+T(i-1,j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i,j) mod 3 <> 0 then printf(`%d,`,0) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 0 then printf(`%d,`, ifactors(T(i,j))[2,2,2] ) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 1 then printf(`%d,`, ifactors(T(i,j))[2,1,2] ) fi: #printf(`%d,`,T(i,j)) od:od: # _James A. Sellers_, Feb 22 2001
%K nonn,easy,tabf
%O 0,30
%A _N. J. A. Sloane_, Feb 22 2001
%E More terms from _James A. Sellers_, Feb 22 2001