|
|
A049341
|
|
a(n+1) = sum of digits of a(n) + a(n-1).
|
|
4
|
|
|
3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n+1) = a007953(a(n) + a(n-1)) for n > 0.
Terms of the simple continued fraction of 21447/[sqrt(1347705679)-29932]. [From Paolo P. Lava, Aug 06 2009]
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Michael Gilleland, Some Self-Similar Integer Sequences
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
Period 8.
a(n)=1/224*{45*(n mod 8)+213*[(n+1) mod 8]-123*[(n+2) mod 8]+129*[(n+3) mod 8]+45*[(n+4) mod 8]+129*[(n+5) mod 8]-39*[(n+6) mod 8]-39*[(n+7) mod 8]} with n>=0 - Paolo P. Lava, Nov 27 2006
|
|
EXAMPLE
|
After 6,9 we get 6+9 = 15 -> 1+5 = 6.
|
|
MATHEMATICA
|
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1}, {3, 6, 9, 6, 6, 3, 9, 3}, 112] (* Ray Chandler, Aug 27 2015 *)
|
|
PROG
|
(Haskell)
a049341 n = a030132_list !! n
a049341_list =
3 : 6 : map a007953 (zipWith (+) a049341_list $ tail a049341_list)
-- Reinhard Zumkeller, Aug 20 2011
|
|
CROSSREFS
|
Cf. A030132, A030133, A049342.
Sequence in context: A019700 A151862 A067722 * A321943 A187082 A137991
Adjacent sequences: A049338 A049339 A049340 * A049342 A049343 A049344
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Damir Olejar
|
|
EXTENSIONS
|
Definition improved by Reinhard Zumkeller, Aug 20 2011
|
|
STATUS
|
approved
|
|
|
|