Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:46:13
%S 0,3,6,30,60,63,126,171,252,300,324,543,585,600,630,1260,1281,1710,
%T 2520,2925,3000,3240,5430,5850,5946,6000,6300,12600,12606,12633,12810,
%U 14631,16263,17100,21618,22308,22971,24663,25200,27633,28845,28887,28965,29241
%N Numbers n such that 3*n and n^3 have the same digit sum.
%C All terms are multiples of 3.
%C n is in the sequence iff 10*n is. Are there infinitely many terms not divisible by 10? - _Robert Israel_, Nov 20 2015
%H Robert Israel, <a href="/A260906/b260906.txt">Table of n, a(n) for n = 1..320</a>
%F A007953(A008585(a(n))) = A007953(A000578(a(n))).
%e 126 is in the sequence because 126^3 = 2000376 and 3*126 = 378 have the same digit sum: 18.
%p select(n -> convert(convert(n^3,base,10),`+`)=convert(convert(3*n,base,10),`+`), 3*[$0..10^5]); # _Robert Israel_, Nov 20 2015
%t Select[Range[0, 50000], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^3]] &]
%o (Magma) [n: n in [0..50000] | &+Intseq(3*n) eq &+Intseq(n^3)];
%o (PARI) for(n=0, 1e5, if(sumdigits(n^3)==sumdigits(3*n), print1(n, ", "))) \\ _Altug Alkan_, Nov 20 2015
%Y Cf. A000578, A007953, A008585, A049343, A260702.
%K nonn,base,easy
%O 1,2
%A _Vincenzo Librandi_, Nov 18 2015