login
Numbers n such that 3*n and n^3 have the same digit sum.
2

%I #22 Sep 08 2022 08:46:13

%S 0,3,6,30,60,63,126,171,252,300,324,543,585,600,630,1260,1281,1710,

%T 2520,2925,3000,3240,5430,5850,5946,6000,6300,12600,12606,12633,12810,

%U 14631,16263,17100,21618,22308,22971,24663,25200,27633,28845,28887,28965,29241

%N Numbers n such that 3*n and n^3 have the same digit sum.

%C All terms are multiples of 3.

%C n is in the sequence iff 10*n is. Are there infinitely many terms not divisible by 10? - _Robert Israel_, Nov 20 2015

%H Robert Israel, <a href="/A260906/b260906.txt">Table of n, a(n) for n = 1..320</a>

%F A007953(A008585(a(n))) = A007953(A000578(a(n))).

%e 126 is in the sequence because 126^3 = 2000376 and 3*126 = 378 have the same digit sum: 18.

%p select(n -> convert(convert(n^3,base,10),`+`)=convert(convert(3*n,base,10),`+`), 3*[$0..10^5]); # _Robert Israel_, Nov 20 2015

%t Select[Range[0, 50000], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^3]] &]

%o (Magma) [n: n in [0..50000] | &+Intseq(3*n) eq &+Intseq(n^3)];

%o (PARI) for(n=0, 1e5, if(sumdigits(n^3)==sumdigits(3*n), print1(n, ", "))) \\ _Altug Alkan_, Nov 20 2015

%Y Cf. A000578, A007953, A008585, A049343, A260702.

%K nonn,base,easy

%O 1,2

%A _Vincenzo Librandi_, Nov 18 2015