login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260903
Numbers n such that (2^(2n+7) * 5^(2n+5) + 740711) / 33 is prime (n > 0).
5
11, 26, 31, 205, 307, 6875, 33161
OFFSET
1,1
COMMENTS
The numbers that follow the expression in the definition have this form: (12) concatenated n times and prepended to 34567.
Empirical observations: primes alternate with nonprimes. 6th (nonprime) and 7th (prime) terms correspond to probable primes. Up to which term the pattern will hold?
(2^(2*a(n)+7) * 5^(2*a(n)+5) + 740711) has 7 proper divisors.
EXAMPLE
11 appears because 121212121212121212121234567 ('12' concatenated 11 times and prepended to '34567') is prime.
MAPLE
A260903:=n->`if`(isprime((2^(2*n+7) * 5^(2*n+5) + 740711)/33), n, NULL): seq(A260903(n), n=1..500); # Wesley Ivan Hurt, Nov 27 2015
MATHEMATICA
Select[Range[500], PrimeQ[(2^(2# + 7) * 5^(2# + 5) + 740711)/33] &] (* or *)
Select[Range[50], DivisorSigma[0, (2^(2# + 7) * 5^(2# + 5) + 740711)] - 1 == 7 &] (* inefficient *)
PROG
(Magma) [n: n in [1..250] | IsPrime((2^(2*n+7) * 5^(2*n+5) + 740711) div 33)]; // Vincenzo Librandi, Nov 18 2015
(PARI) is(n)=isprime((2^(2*n+7)*5^(2*n+5) + 740711)/33) \\ Anders Hellström, Nov 18 2015
CROSSREFS
Sequence in context: A066956 A250611 A137015 * A316315 A251268 A174223
KEYWORD
nonn,base,hard,more
AUTHOR
Mikk Heidemaa, Nov 17 2015
STATUS
approved