login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250611
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction
8
11, 26, 26, 57, 64, 57, 120, 140, 140, 120, 247, 290, 297, 290, 247, 502, 586, 592, 592, 586, 502, 1013, 1172, 1153, 1126, 1153, 1172, 1013, 2036, 2336, 2236, 2092, 2092, 2236, 2336, 2036, 4083, 4654, 4353, 3890, 3691, 3890, 4353, 4654, 4083, 8178, 9278
OFFSET
1,1
COMMENTS
Table starts
...11....26....57...120...247....502...1013...2036...4083...8178..16369...32752
...26....64...140...290...586...1172...2336...4654...9278..18512..36964...73850
...57...140...297...592..1153...2236...4353...8528..16809..33292..66169..131824
..120...290...592..1126..2092...3890...7320..13982..27076..53002.104560..207350
..247...586..1153..2092..3691...6526..11749..21664..40879..78610.153289..301780
..502..1172..2236..3890..6526..10928..18664..32870..59818.112052.214660..417818
.1013..2336..4353..7320.11749..18664..30113..50192..87093.157200.293281..560872
.2036..4654..8528.13982.21664..32870..50192..78814.129104.221798.398368..741758
.4083..9278.16809.27076.40879..59818..87093.129104.198651.321334.548353..982108
.8178.18512.33292.53002.78610.112052.157200.221798.321334.486784.780100.1325186
LINKS
FORMULA
Empirical: T(n,k) = 2^(n-1)*((k+1)*2)^2 + a quadratic polynomial in n
Empirical for column k (k=2 recurrence also works for k=1):
k=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n)=16*2^(n-1) -n-4
k=2: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=36*2^(n-1) +n^2-n-10
k=3: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=64*2^(n-1) +5*n^2+4*n-16
k=4: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=100*2^(n-1) +16*n^2+22*n-18
k=5: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=144*2^(n-1) +42*n^2+69*n-8
k=6: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=196*2^(n-1) +99*n^2+177*n+30
k=7: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n)=256*2^(n-1) +219*n^2+410*n+128
Empirical for diagonal: a(n) = 11*a(n-1) -52*a(n-2) +138*a(n-3) -225*a(n-4) +231*a(n-5) -146*a(n-6) +52*a(n-7) -8*a(n-8)
EXAMPLE
Some solutions for n=6 k=4
..1..1..0..0..0....1..1..1..0..0....1..1..1..1..0....0..0..0..1..0
..1..1..0..0..0....1..1..1..1..1....1..1..1..1..0....0..0..0..1..0
..1..1..0..0..0....1..1..1..1..1....1..1..1..1..0....0..0..0..1..0
..0..0..0..0..0....1..1..1..1..1....1..1..1..1..0....0..0..0..1..0
..0..1..1..1..1....1..1..1..1..1....1..1..1..1..0....0..0..0..1..0
..0..1..1..1..1....0..0..0..1..1....1..1..1..1..0....0..0..0..1..0
..0..1..1..1..1....0..0..0..1..1....0..1..1..1..1....0..0..0..1..0
CROSSREFS
Column 1 is A000295(n+3)
Sequence in context: A220434 A191720 A066956 * A137015 A260903 A316315
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 26 2014
STATUS
approved