|
|
A107466
|
|
Numbers of the form (5^i)*(13^j).
|
|
10
|
|
|
1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020
|
|
MATHEMATICA
|
mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
|
|
PROG
|
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N*=5)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
|
|
CROSSREFS
|
Cf. A003586, A003592, A003593, A003591, A003594, A003595, A003596, A003597, A003598, A003599, A107326, A107364.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005
|
|
STATUS
|
approved
|
|
|
|