login
Triangle of coefficients in expansion of (1 + x + x^2 + x^3 + x^4)^n.
27

%I #89 Aug 29 2022 09:42:46

%S 1,1,1,1,1,1,1,2,3,4,5,4,3,2,1,1,3,6,10,15,18,19,18,15,10,6,3,1,1,4,

%T 10,20,35,52,68,80,85,80,68,52,35,20,10,4,1,1,5,15,35,70,121,185,255,

%U 320,365,381,365,320,255,185,121,70,35,15,5,1,1,6,21,56,126,246,426,666

%N Triangle of coefficients in expansion of (1 + x + x^2 + x^3 + x^4)^n.

%C Coefficient of x^k in (1 + x + x^2 + x^3 + x^4)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 4 objects to fall in each urn. - _N-E. Fahssi_, Mar 16 2008

%C The n-th row has 4n+1 terms (A016813). - _Michel Marcus_, Sep 08 2013

%C Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2), (1,3), (1,4). - _Nicholas Ham_, Sep 14 2018

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78, 16. for q=5.

%D D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).

%H T. D. Noe, <a href="/A035343/b035343.txt">Rows n = 0..25, flattened</a>

%H Moussa Ahmia and Hacene Belbachir, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p16">Preserving log-convexity for generalized Pascal triangles</a>, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - From _N. J. A. Sloane_, Oct 13 2012

%H Said Amrouche, Hacène Belbachir, <a href="https://arxiv.org/abs/2001.11665">Asymmetric extension of Pascal-Dellanoy triangles</a>, arXiv:2001.11665 [math.CO], 2020.

%H Armen G. Bagdasaryan, Ovidiu Bagdasar, <a href="https://doi.org/10.1016/j.endm.2018.05.012">On some results concerning generalized arithmetic triangles</a>, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.

%H Tomislav Došlić, <a href="https://doi.org/10.26493/1855-3974.1508.f8c">Block allocation of a sequential resource</a>, Ars Mathematica Contemporanea (2019) Vol. 17, 79-88.

%H Nour-Eddine Fahssi, <a href="http://arxiv.org/abs/1202.0228">Polynomial Triangles Revisited</a>, arXiv:1202.0228 [math.CO], (25-July-2012).

%H D. C. Fielder and C. O. Alford, <a href="/A027907/a027907_2.pdf">Pascal's triangle: top gun or just one of the gang?</a>, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)

%H S. R. Finch, P. Sebah and Z.-Q. Bai, <a href="http://arXiv.org/abs/0802.2654">Odd Entries in Pascal's Trinomial Triangle</a>, arXiv:0802.2654 [math.NT], 2006.

%H J. E. Freund, <a href="http://www.jstor.org/stable/2308048">Restricted Occupancy Theory - A Generalization of Pascal's Triangle</a>, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.

%H Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee <a href="https://doi.org/10.1080/23311835.2017.1333293">The k-nacci triangle and applications</a>. Cogent Math. 4, Article ID 1333293, 13 p. (2017).

%H T. Neuschel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Neuschel/neuschel4.html">A Note on Extended Binomial Coefficients</a>, J. Int. Seq. 17 (2014) # 14.10.4.

%H Eric Rowland, <a href="https://arxiv.org/abs/1704.05872">A matrix generalization of a theorem of Fine</a>, arXiv:1704.05872 [math.NT], 2017. See p.5.

%H Eric Rowland, <a href="http://math.colgate.edu/~integers/sjs18/sjs18.Abstract.html">A matrix generalization of a theorem of Fine</a>, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A18.

%H Bao-Xuan Zhu, <a href="http://arxiv.org/abs/1605.00257">Linear transformations and strong q-log-concavity for certain combinatorial triangle</a>, arXiv preprint arXiv:1605.00257 [math.CO], 2016.

%F T(n,k) = Sum_{i = 0..floor(k/5)} (-1)^i*binomial(n,i)*binomial(n+k-1-5*i,n-1) for n >= 0 and 0 <= k <= 4*n. - _Peter Bala_, Sep 07 2013

%e Triangle begins:

%e n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

%e [0] 1;

%e [1] 1, 1, 1, 1, 1;

%e [2] 1, 2, 3, 4, 5, 4, 3, 2, 1;

%e [3] 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1;

%e [4] ...

%p #Define the r-nomial coefficients for r = 1, 2, 3, ...

%p rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):

%p #Display the 5-nomials as a table

%p r := 5: rows := 10:

%p for n from 0 to rows do

%p seq(rnomial(r,n,k), k = 0..(r-1)*n)

%p end do;

%p # _Peter Bala_, Sep 07 2013

%t Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4)^n, x], {n, 0, 10}]] (* _T. D. Noe_, Apr 04 2011 *)

%o (Maxima) pentanomial(n,k):=coeff(expand((1+x+x^2+x^3+x^4)^n),x,k);

%o create_list(pentanomial(n,k),n,0,6,k,0,4*n); \\ _Emanuele Munarini_, Mar 15 2011

%o (PARI) row(n) = Vec(((1 + x + x^2 + x^3 + x^4)^n) + O(x^(4*n+1)))

%o trianglerows(n) = for(k=0, n-1, print(row(k)))

%o /* Print initial 5 rows of triangle as follows */

%o trianglerows(5) \\ _Felix Fröhlich_, Aug 26 2018

%Y Cf. A007318, A027907, A008287. A063260, A063265, A171890, A213651, A213652.

%K nonn,tabf,easy

%O 0,8

%A _N. J. A. Sloane_