login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213651 10-nomial coefficient array: Coefficients of the polynomial (1 + ... + X^9)^n, n=0,1,... 9
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 282, 348, 415, 480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

The n-th row also yields the number of ways to get a total of n, n+1, ..., 10n, when throwing n 10-sided dice, or summing n integers ranging from 1 to 10.

The row sums equal 10^n = A011557(n).

The row lengths are 1 + 9n = 10n - (n-1) = A017173(n).

T(n,k) is the number of integers in the [0, 10^n-1] range distributed according to the sum k of their digits. - Miquel Cerda, Jun 21 2017

The sum of the squares of the integers of the n-th row gives A174061(n). - Miquel Cerda, Jul 03 2017

LINKS

Seiichi Manyama, Rows n = 0..46, flattened

Miquel Cerda, Graphical construction of the triangle T(n,k) for n = 0..11.

FORMULA

T(n,k) = Sum_{i = 0..floor(k/10)} (-1)^i*binomial(n,i)*binomial(n+k-1-10*i,n-1) for n >= 0 and 0 <= k <= 9*n. - Peter Bala, Sep 07 2013

EXAMPLE

There are 1, 3, 6, 10, ... ways to score a total of 4, 5, 6, 7, ... when throwing three 10-sided dice.

The table begins as follows:

(row n=0) 1; (row sum = 1, row length = 1)

(row n=1) 1,1,1,1,1,1,1,1,1,1; (row sum = 10, row length = 10)

(row n=2) 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1; (sum = 100, length = 19)

(row n=3) 1,3,6,10,15,21,28,36,45,55,63,69,73,75,75,73,...; row sum = 1000;

(row n=4) 1,4,10,20,35,56,84,120,165,220,282,348,415,...; row sum = 10^4;

etc.

Number of integers in (row n=2): k(2)=3, because in the range 0 to 99 there are 3 integers whose digits sum to 2: 2, 11 and 20. - Miquel Cerda, Jun 21 2017

MAPLE

#Define the r-nomial coefficients for r = 1, 2, 3, ...

rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):

#Display the 10-nomials as a table

r := 10:  rows := 10:

for n from 0 to rows do

seq(rnomial(r, n, k), k = 0..(r-1)*n)

end do;

# Peter Bala, Sep 07 2013

PROG

(PARI) concat(vector(5, k, Vec(sum(j=0, 9, x^j)^(k-1))))

CROSSREFS

The q-nomial arrays are for q=2..10: A007318 (Pascal), A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.

Sequence in context: A305903 A305904 A319345 * A287796 A073835 A334387

Adjacent sequences:  A213648 A213649 A213650 * A213652 A213653 A213654

KEYWORD

nonn,tabf

AUTHOR

M. F. Hasler, Jun 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 10:24 EDT 2021. Contains 342935 sequences. (Running on oeis4.)