login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206765 G.f.: Product_{n>=1} [ (1 - 3^n*x^n) / (1 - (n+3)^n*x^n) ]^(1/n). 2
1, 1, 12, 87, 907, 8393, 118932, 1683990, 31209334, 635005549, 15054451057, 393600573337, 11466736952722, 363842430190308, 12564913404375244, 467483278911401155, 18670853023655302285, 795978439482823960066, 36093307429580735618893 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..380

FORMULA

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 3^(n-k) ).

Logarithmic derivative yields A206766.

a(n) ~ exp(3) * n^(n-1). - Vaclav Kotesovec, Oct 08 2016

EXAMPLE

G.f.: A(x) = 1 + x + 12*x^2 + 87*x^3 + 907*x^4 + 8393*x^5 + 118932*x^6 +...

where the g.f. equals the product:

A(x) = (1-3*x)/(1-4*x) * ((1-3^2*x^2)/(1-5^2*x^2))^(1/2) * ((1-3^3*x^3)/(1-6^3*x^3))^(1/3) * ((1-3^4*x^4)/(1-7^4*x^4))^(1/4) * ((1-3^5*x^5)/(1-8^5*x^5))^(1/5) *...

The logarithm equals the l.g.f. of A206766:

log(A(x)) = x + 23*x^2/2 + 226*x^3/3 + 3039*x^4/4 + 33306*x^5/5 +...

MATHEMATICA

max = 19; p = Product[((1-3^n*x^n) / (1-(n+3)^n*x^n))^(1/n), {n, 1, max}] + O[x]^max; CoefficientList[p, x] (* Jean-Fran├žois Alcover, Oct 08 2016 *)

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*3^(m-k))+x*O(x^n))), n)}

(PARI) {a(n)=polcoeff(prod(k=1, n, ((1-3^k*x^k)/(1-(k+3)^k*x^k +x*O(x^n)))^(1/k)), n)}

for(n=0, 31, print1(a(n), ", "))

CROSSREFS

Cf. A206766 (log), A205814, A205811, A206763.

Sequence in context: A183721 A180797 A137207 * A228500 A082814 A178257

Adjacent sequences:  A206762 A206763 A206764 * A206766 A206767 A206768

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)