login
A137207
Number of exceptional sets of roots of type D_n. Also the number of unordered factorizations of the Coxeter element.
1
12, 87, 584, 3835, 25008, 162792, 1060048, 6910695, 45119100, 295038315, 1932260256, 12673336052, 83236707232, 547388545740, 3604063891104, 23755630474079, 156740823815940, 1035157282013085, 6842413166034600, 45265133475699795, 299671339559444160, 1985322768625822080
OFFSET
3,1
FORMULA
a(n) = (2*(n-1)/(2*n-1))*binomial(3*n-3,n-1)-binomial(3*n-5,n-2)+4*binomial(3*n-3,n-3).
a(n) = (16*n^2-41*n+24)/(n*(2*n-1))*binomial(3*n-5,n-2).
EXAMPLE
a(3)=12 because D3 is the same as A3.
PROG
(MuPAD)
modu_NC_D:=proc(n) begin (16*n*n-41*n+24)/n/(2*n-1)*binomial(3*n-5, n-2) end;
(Sage)
def A137207(n):
return (16*n*n-41*n+24)*binomial(3*n-5, n-2)/n/(2*n-1)
CROSSREFS
Cf. A001764 for type A, A045721 for type B.
Sequence in context: A369421 A183721 A180797 * A206765 A228500 A348415
KEYWORD
nonn
AUTHOR
F. Chapoton, Mar 05 2008
EXTENSIONS
a(22)-a(24) from Stefano Spezia, Feb 29 2024
STATUS
approved