login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest prime factor of n^n - (n-1)^(n-1).
5

%I #23 Feb 06 2020 08:18:27

%S 3,23,229,151,431,776887,14731,109,80317,275311670611,19395030961,

%T 10423708597,968299894201,19428121,165218809021364149,

%U 808793517812627212561,3979203955386313,588489604729898953429,2126173979464312447783,5043293621028391,90772326303985278570534379

%N Greatest prime factor of n^n - (n-1)^(n-1).

%H Daniel Suteu and Amiram Eldar, <a href="/A068955/b068955.txt">Table of n, a(n) for n = 2..86</a> (terms 2..62 from Daniel Suteu)

%F a(n) = A006530(A007781(n-1)).

%e A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 968299894201.

%p a:= n-> max(map(i-> i[1], ifactors(n^n-(n-1)^(n-1))[2])):

%p seq(a(n), n=2..23); # _Alois P. Heinz_, Mar 10 2019

%t a[n_] := FactorInteger[n^n - (n-1)^(n-1)][[-1, 1]]; Array[a, 20, 2] (* _Amiram Eldar_, Feb 06 2020 *)

%o (PARI) a(n) = vecmax(factor(n^n-(n-1)^(n-1))[,1]); \\ _Daniel Suteu_, Mar 10 2019

%Y Cf. A006530, A007781, A068954, A068956.

%K nonn

%O 2,1

%A _Reinhard Zumkeller_, Mar 11 2002

%E a(18)-a(22) from _Daniel Starodubtsev_, Mar 10 2019