login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
13

%I #51 Sep 08 2022 08:44:35

%S 1,3,23,229,2869,43531,776887,15953673,370643273,9612579511,

%T 275311670611,8630788777645,293959006143997,10809131718965763,

%U 426781883555301359,18008850183328692241,808793517812627212561

%N a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.

%C (12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - _Alexander Adamchuk_, Apr 09 2007

%D Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

%H Doug Bell, <a href="/A007781/b007781.txt">Table of n, a(n) for n = 0..100</a>

%H Andrew Cusumano, <a href="https://www.fq.math.ca/Problems/advanced45-2.pdf">Problem H-656</a>, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; <a href="https://www.fq.math.ca/Problems/Aug2009advanced.pdf">A Sequence Tending To e</a>, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.

%H Ronald K. Hoeflin, <a href="https://web.archive.org/web/20140220060408/http://www.eskimo.com:80/~miyaguch/mega.html">Mega Test</a>. [Wayback Machine link]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerDifferencePrime.html">Power Difference Prime</a>.

%F a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.

%F a(n) = abs(discriminant(x^(n+1)-x+1)).

%F E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - _Robert Israel_, Aug 19 2015

%F Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - _Amiram Eldar_, Jan 03 2022

%e a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.

%p seq( `if`(n=0,1,(n+1)^(n+1) -n^n), n=0..20); # _G. C. Greubel_, Mar 05 2020

%t Join[{1},Table[(n+1)^(n+1)-n^n,{n,20}]] (* _Harvey P. Dale_, Feb. 09 2011 *)

%t Differences[Table[n^n,{n,0,20}]] (* _Charles R Greathouse IV_, Feb 09 2011 *)

%o (PARI) first(m)=vector(m,i,i--;(i+1)^(i+1) - i^i) /* _Anders Hellström_, Aug 18 2015 */

%o (Magma) [1] cat [(n+1)^(n+1)-n^n: n in [1..20]]; // _Vincenzo Librandi_, Aug 19 2015

%o (Sage) [1]+[(n+1)^(n+1) -n^n for n in (1..20)] # _G. C. Greubel_, Mar 05 2020

%Y Cf. A000312, A068146, A068954, A068955, A068956, A068957.

%Y Cf. A002407, A003215, A127854.

%K nonn,easy

%O 0,2

%A Peter McCormack (peter.mccormack(AT)its.csiro.au)