login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134432
Sum of entries in all the arrangements of the set {1,2,...,n} (to n=0 there corresponds the empty set).
4
0, 1, 9, 66, 490, 3915, 34251, 328804, 3452436, 39456405, 488273005, 6510306726, 93097386174, 1421850988831, 23105078568495, 398118276872520, 7251440043035176, 139227648826275369, 2810658160680434001, 59519819873232720010, 1319356007189991960210
OFFSET
0,3
COMMENTS
Appears to be the binomial transform of A001286 (filled with the appropriate two leading zeros), shifted one index left. - R. J. Mathar, Apr 04 2012
LINKS
FORMULA
a(n) = Sum_{k=0..n*(n+1)/2} k*A134431(n,k).
a(n) = (d/dt)P[n](t) evaluated at t=1; here P[n](t)=Q[n](t,1) where the polynomials Q[n](t,x) are defined by Q[0]=1 and Q[n]=Q[n-1] + xt^n (d/dx)xQ[n-1]. (Q[n](t,x) is the bivariate generating polynomial of the arrangements of {1,2,...,n}, where t (x) marks the sum (number) of the entries; for example, Q[2](t,x) = 1 + tx + t^2*x + 2t^3*x^2, corresponding to: empty, 1, 2, 12 and 21, respectively.)
E.g.f.: exp(x)*x*(2 + x - x^2) / (2*(1 - x)^3). - Ilya Gutkovskiy, Jun 02 2020
From G. C. Greubel, Jan 09 2022: (Start)
a(n) = A271705(n+1, 2).
a(n) = ((n+1)/2) * Sum_{j=0..n} j * j! * binomial(n, j).
a(n) = (1/n!)*binomial(n+1, 2) * Sum_{j=0..n} (j!)^2 * A271703(n, j). (End)
D-finite with recurrence (-n+1)*a(n) +(n+1)^2*a(n-1) -n*(n+1)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=9 because the arrangements of {1,2} are (empty), 1, 2, 12 and 21.
MAPLE
Q[0]:=1: for n to 17 do Q[n]:=sort(simplify(Q[n-1]+t^n*x*(diff(x*Q[n-1], x))), t) end do: for n from 0 to 17 do P[n]:=sort(subs(x=1, Q[n])) end do: seq(subs(t =1, diff(P[n], t)), n=0..17);
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, [t!, 0],
b(n-1, t)+(p-> p+[0, n*p[1]])(b(n-1, t+1)))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 19 2020
MATHEMATICA
(* First program *)
b[n_, s_, t_]:= b[n, s, t] = If[n==0, t! x^s, b[n-1, s, t] + b[n-1, s+n, t+1]];
T[n_]:= T[n]= Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] @ b[n, 0, 0];
a[n_] := Sum[k T[n][[k+1]], {k, 0, n(n+1)/2}];
a /@ Range[0, 20] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz *)
(* Second program *)
a[n_]:= ((n+1)/2)*Sum[j*j!*Binomial[n, j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 09 2022 *)
PROG
(Magma) [Binomial(n+1, 2)*(&+[Factorial(j)*Binomial(n-1, j-1): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 09 2022
(Sage) [((n+1)/2)*sum( j*factorial(j)*binomial(n, j) for j in (0..n) ) for n in (0..30)] # G. C. Greubel, Jan 09 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 16 2007
EXTENSIONS
More terms from Alois P. Heinz, Dec 22 2017
STATUS
approved