login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226201
a(n) = 8^n + n.
7
1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996
OFFSET
0,2
COMMENTS
Smallest prime of this form is a(101). - Bruno Berselli, Jun 17 2013
FORMULA
G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).
a(n) = 10*a(n-1)-17*a(n-2)+8*a(n-3).
MATHEMATICA
Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{10, -17, 8}, {1, 9, 66}, 30] (* Harvey P. Dale, Aug 11 2015 *)
PROG
(Magma) [8^n+n: n in [0..30]]; /* or */ I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
(PARI) a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199555 (first differences).
Sequence in context: A048439 A134432 A098107 * A091647 A321945 A232018
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 16 2013
STATUS
approved