login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8^n + n.
7

%I #25 Feb 12 2024 13:12:22

%S 1,9,66,515,4100,32773,262150,2097159,16777224,134217737,1073741834,

%T 8589934603,68719476748,549755813901,4398046511118,35184372088847,

%U 281474976710672,2251799813685265,18014398509482002,144115188075855891,1152921504606846996

%N a(n) = 8^n + n.

%C Smallest prime of this form is a(101). - _Bruno Berselli_, Jun 17 2013

%H Vincenzo Librandi, <a href="/A226201/b226201.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,-17,8).

%F G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).

%F a(n) = 10*a(n-1)-17*a(n-2)+8*a(n-3).

%t Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]

%t LinearRecurrence[{10,-17,8},{1,9,66},30] (* _Harvey P. Dale_, Aug 11 2015 *)

%o (Magma) [8^n+n: n in [0..30]]; /* or */ I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];

%o (PARI) a(n)=8^n+n \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).

%Y Cf. A199555 (first differences).

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Jun 16 2013