login
A308875
Irregular table read by rows: the n-th row lists the number of (n-1)-dimensional cells in the convex regular n-dimensional polytopes in ascending order, n >= 3.
0
4, 6, 8, 12, 20, 5, 8, 16, 24, 120, 600, 6, 10, 32, 7, 12, 64, 8, 14, 128, 9, 16, 256, 10, 18, 512, 11, 20, 1024, 12, 22, 2048, 13, 24, 4096, 14, 26, 8192, 15, 28, 16384, 16, 30, 32768, 17, 32, 65536, 18, 34, 131072, 19, 36, 262144, 20, 38, 524288, 21, 40, 1048576
OFFSET
3,1
COMMENTS
Also, the n-th row lists the number of edges (i.e., 1-dimensional cells) in the convex regular n-dimensional polytopes in ascending order. - Jianing Song, Jun 29 2019
FORMULA
For n >= 5, the n-th row is n+1, 2n, 2^n. - Jianing Song, Jun 29 2019
EXAMPLE
From Jianing Song, Jun 29 2019: (Start)
Row 3: 4, 6, 8, 12, 20;
Row 4: 5, 8, 16, 24, 120, 600;
Row 5: 6, 10, 32;
Row 6: 7, 12, 64;
...
(End)
PROG
(PARI) row(n) = if(n>=5, [n+1, 2*n, 2^n], if(n==3, [4, 6, 8, 12, 20], if(n==4, [5, 8, 16, 24, 120, 600])))
list(n) = my(v=[]); for(i=3, n, v=concat(v, row(i))); v \\ Jianing Song, Jun 29 2019
CROSSREFS
Cf. A000079, A005843, A053016 (row 3), A063924 (row 4).
Sequence in context: A023374 A053016 A078785 * A323059 A136254 A146528
KEYWORD
nonn,easy,tabf
AUTHOR
Donghwi Park, Jun 29 2019
EXTENSIONS
Edited by Jianing Song, Jun 29 2019
STATUS
approved