The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136254 Generator for the finite sequence A053016. 1
 4, 6, 8, 12, 20, 34, 56, 88, 132, 190, 264, 356, 468, 602, 760, 944, 1156, 1398, 1672, 1980, 2324, 2706, 3128, 3592, 4100, 4654, 5256, 5908, 6612, 7370, 8184, 9056, 9988, 10982, 12040, 13164, 14356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = n^3/3 - n^2 + 8n/3 + 4. G.f.: (8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1). - Alexander R. Povolotsky, Mar 31 2008 From G. C. Greubel, Feb 23 2017: (Start) E.g.f.: (1/3)*(12 + 6*x + x^3)*exp(x). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End) MATHEMATICA CoefficientList[Series[(8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Feb 23 2017 *) LinearRecurrence[{4, -6, 4, -1}, {4, 6, 8, 12}, 40] (* Harvey P. Dale, Jul 23 2018 *) PROG (PARI) x='x+O('x^50); Vec((8*x^2 - 10*x + 4)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)) \\ G. C. Greubel, Feb 23 2017 CROSSREFS Cf. A053016. Sequence in context: A078785 A308875 A323059 * A146528 A345016 A216051 Adjacent sequences: A136251 A136252 A136253 * A136255 A136256 A136257 KEYWORD nonn,easy AUTHOR Rolf Pleisch, Mar 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 07:43 EDT 2024. Contains 372666 sequences. (Running on oeis4.)