login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136255
Triangle T(n,k) read by rows: T(n,k) = (k+1) * A137276(n,k+1).
1
1, 0, 2, 1, 0, 3, 0, 0, 0, 4, -3, 0, -3, 0, 5, 0, -6, 0, -8, 0, 6, 5, 0, -6, 0, -15, 0, 7, 0, 16, 0, 0, 0, -24, 0, 8, -7, 0, 30, 0, 15, 0, -35, 0, 9, 0, -30, 0, 40, 0, 42, 0, -48, 0, 10, 9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11
OFFSET
1,3
COMMENTS
Row sums are 1, 2, 4, 4, -1, -8, -9, 0, 12, 14, 1, ... with g.f. x*(1+3*x^2) / (x^2-x+1)^2.
FORMULA
T(n,k) = (k+1) * A137276(n,k+1) .
EXAMPLE
Triangle starts:
{1},
{0, 2},
{1, 0, 3},
{0, 0, 0, 4},
{-3, 0, -3, 0, 5},
{0, -6, 0, -8, 0, 6},
{5, 0, -6, 0, -15, 0, 7},
{0, 16, 0, 0, 0, -24, 0, 8},
{-7, 0, 30, 0, 15, 0, -35, 0, 9},
{0, -30, 0, 40, 0,42, 0, -48, 0, 10},
{9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11},
...
MAPLE
B := proc(n, x) if n = 0 then 1; else add( (-1)^j*binomial(n-j, j)*(n-4*j)/(n-j)*x^(n-2*j), j=0..n/2) ; fi; end:
A136255 := proc(n, k) diff( B(n, x), x) ; coeftayl(%, x=0, k) ; end: seq( seq(A136255(n, k), k=0..n-1), n=1..15) ;
MATHEMATICA
B[x, 0] = 1; B[x, 1] = x; B[x, 2] = 2 + x^2; B[x, 3] = x + x^3; B[x, 4] = -2 + x^4; B[x_, n_] := B[x, n] = x*B[x, n-1] - B[x, n-2]; P[x_, n_] := D[B[x, n + 1], x]; Flatten @ Table[CoefficientList[P[x, n], x], {n, 0, 10}]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Mar 17 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 27 2009
Edited by and new name from Joerg Arndt, May 15 2016
STATUS
approved