login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159813
Expansion of eta(q) * eta(q^4) * eta(q^14)^4 / (eta(q^2) * eta(q^7) * eta(q^28)) in powers of q.
2
1, -1, 0, -1, 0, 0, 1, 1, -1, 0, 0, 0, 0, 1, -2, 1, 0, 3, 0, 0, -2, -2, 0, 0, -1, 0, 0, -1, 0, 2, 0, -1, 0, 0, 0, 1, 4, 0, 2, 0, 0, -2, 0, 0, 0, -4, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 2, -2, 0, 2, 0, 0, -1, -1, -2, 0, 0, 0, 0, 4, 2, -3, 0, 2, 0, 0, 2, 2, -2, 0
OFFSET
1,15
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Unique cusp form of weight 3/2, level 28 and trivial character.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * psi(-q) * psi(-q^7) * phi(q^7) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 15 2012
Euler transform of period 28 sequence [ -1, 0, -1, -1, -1, 0, 0, -1, -1, 0, -1, -1, -1, -3, -1, -1, -1, 0, -1, -1, 0, 0, -1, -1, -1, 0, -1, -3, ...]. - Michael Somos, Aug 15 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (28 t)) = 56^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215556. - Michael Somos, Aug 15 2012
a(7*n + 3) = a(7*n + 5) = a(7*n + 6) = 0. a(7*n) = A215556(n). - Michael Somos, Aug 15 2012
EXAMPLE
G.f. = q - q^2 - q^4 + q^7 + q^8 - q^9 + q^14 - 2*q^15 + q^16 + 3*q^18 - 2*q^21 + ...
MATHEMATICA
max = 100; s28 = Table[{-1, 0, -1, -1, -1, 0, 0, -1, -1, 0, -1, -1, -1, -3, -1, -1, -1, 0, -1, -1, 0, 0, -1, -1, -1, 0, -1, -3}, {max/28 // Ceiling}] // Flatten; coes = Series[ 1 + Sum[a[n]*x^n, {n, 1, max}] - Product[1/(1 - x^n)^s28[[n]], {n, 1, max}], {x, 0, max}] // CoefficientList[#, x] &; sol = Solve[Thread[coes == 0]]; Join[{1}, Table[a[n], {n, 1, max}] /. sol // First] (* Jean-François Alcover, Jun 20 2013 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(7/2)] EllipticTheta[ 3, 0, q^7]/2 , {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
a[ n_] := SeriesCoefficient[ 2^(-1/2) q^(7/8) EllipticTheta[ 2, Pi/4, q^(1/2)] QPochhammer[ -q^7] QPochhammer[ q^14], {q, 0, n}]; (* Michael Somos, Sep 06 2015 *)
a[ n_] := SeriesCoefficient[ q Product[ (1 - q^k)^{1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 3}[[Mod[k, 28, 1]]], {k, n - 1}], {q, 0, n}]; (* Michael Somos, Sep 06 2015 *)
PROG
(Magma) Basis(CuspidalSubspace(HalfIntegralWeightForms(28, 3/2)), 100)
(Magma) A := Basis( CuspForms( Gamma1(28), 3/2), 81); A[1] - A[2]; /* Michael Somos, Sep 06 2015 */
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^14 + A)^4 / (eta(x^2 + A) * eta(x^7 + A) * eta(x^28 + A)), n))}; /* Michael Somos, Aug 15 2012 */
CROSSREFS
Cf. A215556.
Sequence in context: A136255 A194812 A305320 * A157409 A245960 A340867
KEYWORD
sign
AUTHOR
Steven Finch, Apr 22 2009
STATUS
approved