login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135936
Irregular triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents (another version).
4
1, 1, 1, 2, 1, 1, 1, 0, -2, 1, -1, -3, 1, -2, -3, 2, 1, -3, -2, 5, 1, -4, 0, 8, -2, 1, -5, 3, 10, -7, 1, -6, 7, 10, -15, 2, 1, -7, 12, 7, -25, 9, 1, -8, 18, 0, -35, 24, -2, 1, -9, 25, -12, -42, 49, -11, 1, -10, 33, -30, -42, 84, -35, 2, 1, -11, 42, -55, -30, 126, -84, 13, 1, -12, 52, -88, 0, 168, -168, 48, -2, 1, -13, 63, -130, 55, 198, -294
OFFSET
0,4
COMMENTS
See A135929 and A138034 for further information.
LINKS
R. J. Mathar, Mar 11 2008, Table of n, a(n) for n = 0..160
FORMULA
Conjectures from Thomas Baruchel, Jun 03 2018: (Start)
T(n,m) = 4*A115139(n+1,m) - 3*A132460(n,m).
T(n,m) = (-1)^m * (binomial(n-m, m) - 3*binomial(n-m-1, m-1)). (End)
EXAMPLE
The Boubaker polynomials B_0(x), B_1(x), B_2(x), ... are:
1
x
x^2 + 2
x^3 + x
x^4 - 2
x^5 - x^3 - 3*x
x^6 - 2*x^4 - 3*x^2 + 2
x^7 - 3*x^5 - 2*x^3 + 5*x
x^8 - 4*x^6 + 8*x^2 - 2
x^9 - 5*x^7 + 3*x^5 + 10*x^3 - 7*x
...
MAPLE
A135936 := proc(n, m) coeftayl( coeftayl( (1+3*t^2)/(1-x*t+t^2), t=0, n), x=0, m) ; end: for n from 0 to 25 do for m from n to 0 by -2 do printf("%d, ", A135936(n, m)) ; od; od; # R. J. Mathar, Mar 11 2008
MATHEMATICA
T[n_, m_] := SeriesCoefficient[SeriesCoefficient[
(1+3*t^2)/(1-x*t+t^2), {t, 0, n}], {x, 0, m}];
Table[T[n, m], {n, 0, 25}, {m, n, 0, -2}] // Flatten (* Jean-François Alcover, Mar 11 2023, after R. J. Mathar *)
CROSSREFS
Cf. A138034.
Sequence in context: A331186 A375847 A372504 * A109707 A214578 A064272
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Mar 09 2008
EXTENSIONS
More terms from R. J. Mathar, Mar 11 2008
STATUS
approved