login
A135939
Highest exponent occurring in the prime factorization of Fibonacci(n).
3
1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 7, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1
OFFSET
3,4
LINKS
FORMULA
a(n) = A051903(A000045(n)). - Amiram Eldar, Sep 09 2024
EXAMPLE
a(12) = 4 since Fibonacci(12) = 144 = 2^4 * 3^2.
MAPLE
A051903 := proc(n) if n = 1 then 0 ; else max(seq(op(2, i), i=ifactors(n)[2])) ; fi ; end: A135939 := proc(n) A051903(combinat[fibonacci](n)) ; end: seq(A135939(n), n=3..120) ; # R. J. Mathar, Mar 16 2008
MATHEMATICA
f[n_]:=Max[Last/@FactorInteger[n]]; Table[f[Fibonacci[n]], {n, 3, 5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
PROG
(PARI) for(n=3, 200, print1(vecmax(factor(fibonacci(n))[, 2])", ")) \\ Yolinda (yoliahmed33(AT)yandex.ru), Mar 27 2008
CROSSREFS
Sequence in context: A046556 A046535 A324198 * A061653 A069226 A326697
KEYWORD
nonn
AUTHOR
Colm Mulcahy, Mar 04 2008
EXTENSIONS
More terms from R. J. Mathar and Yolinda (yoliahmed33(AT)yandex.ru), Mar 16 2008
STATUS
approved