login
A366168
Denominator of the second derivative of the n-th Bernoulli polynomial B(n,x).
9
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 3, 5, 5, 21, 1, 5, 15, 5, 1, 21, 7, 1, 1, 1, 1, 231, 7, 35, 3, 1, 1, 1365, 35, 7, 21, 55, 55, 105, 7, 7, 105, 35, 5, 663, 13, 11, 33, 55, 1, 57, 1, 5, 15, 1, 1, 15015, 715, 715, 33, 17, 85, 2415, 35, 1, 3, 55, 55, 285285, 19019, 1001
OFFSET
1,8
COMMENTS
The sequence consists only of odd numbers. The denominators are connected with A324370, from which an explicit formula follows as given below. See Kellner 2023.
LINKS
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
Let (n)_k be the falling factorial. Let s_p(n) be the sum of the p-adic digits of n.
a(1) = 1, and for n > 1, a(n) = A324370(n-1)/gcd(A324370(n-1), n) = Product_{prime p <= n/(2+(n mod 2)): gcd(p,(n)_2)=1, s_p(n-1) >= p} p.
EXAMPLE
B(5,x) = x^5 - (5x^4)/2 + (5 x^3)/3 - x/6 and B''(5,x) = 20x^3 - 30x^2 + 10x, so a(5) = 1.
a(14) = A324370(13)/gcd(A324370(13), 14) = 210/gcd(210, 14) = 15.
MATHEMATICA
(* k-th derivative of BP *)
k = 2; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}]
(* exact denominator formula *)
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]];
DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]];
k = 2; Table[DBP[n, k], {n, 1, 100}]
PROG
(Python)
from math import lcm
from sympy import Poly, diff, bernoulli
from sympy.abc import x
def A366168(n): return lcm(*(c.q for c in Poly(diff(bernoulli(n, x), x, 2)).coeffs())) if n>=3 else 1 # Chai Wah Wu, Oct 04 2023
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Bernd C. Kellner, Oct 02 2023
STATUS
approved