login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents (another version).
4

%I #26 Mar 11 2023 04:52:24

%S 1,1,1,2,1,1,1,0,-2,1,-1,-3,1,-2,-3,2,1,-3,-2,5,1,-4,0,8,-2,1,-5,3,10,

%T -7,1,-6,7,10,-15,2,1,-7,12,7,-25,9,1,-8,18,0,-35,24,-2,1,-9,25,-12,

%U -42,49,-11,1,-10,33,-30,-42,84,-35,2,1,-11,42,-55,-30,126,-84,13,1,-12,52,-88,0,168,-168,48,-2,1,-13,63,-130,55,198,-294

%N Irregular triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents (another version).

%C See A135929 and A138034 for further information.

%H R. J. Mathar, Mar 11 2008, <a href="/A135936/b135936.txt">Table of n, a(n) for n = 0..160</a>

%F Conjectures from _Thomas Baruchel_, Jun 03 2018: (Start)

%F T(n,m) = 4*A115139(n+1,m) - 3*A132460(n,m).

%F T(n,m) = (-1)^m * (binomial(n-m, m) - 3*binomial(n-m-1, m-1)). (End)

%e The Boubaker polynomials B_0(x), B_1(x), B_2(x), ... are:

%e 1

%e x

%e x^2 + 2

%e x^3 + x

%e x^4 - 2

%e x^5 - x^3 - 3*x

%e x^6 - 2*x^4 - 3*x^2 + 2

%e x^7 - 3*x^5 - 2*x^3 + 5*x

%e x^8 - 4*x^6 + 8*x^2 - 2

%e x^9 - 5*x^7 + 3*x^5 + 10*x^3 - 7*x

%e ...

%p A135936 := proc(n,m) coeftayl( coeftayl( (1+3*t^2)/(1-x*t+t^2),t=0,n), x=0,m) ; end: for n from 0 to 25 do for m from n to 0 by -2 do printf("%d, ",A135936(n,m)) ; od; od; # _R. J. Mathar_, Mar 11 2008

%t T[n_, m_] := SeriesCoefficient[SeriesCoefficient[

%t (1+3*t^2)/(1-x*t+t^2), {t, 0, n}], {x, 0, m}];

%t Table[T[n, m], {n, 0, 25}, {m, n, 0, -2}] // Flatten (* _Jean-François Alcover_, Mar 11 2023, after _R. J. Mathar_ *)

%Y Cf. A138034.

%K sign,tabf

%O 0,4

%A _N. J. A. Sloane_, Mar 09 2008

%E More terms from _R. J. Mathar_, Mar 11 2008