login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064272 Number of representations of n as the sum of a prime number and a nonzero square. 9
0, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 0, 1, 3, 2, 1, 2, 0, 3, 2, 0, 2, 1, 0, 4, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 3, 1, 3, 2, 0, 2, 2, 0, 4, 2, 0, 2, 3, 2, 4, 2, 1, 2, 3, 1, 1, 3, 1, 4, 2, 1, 3, 1, 1, 5, 3, 0, 3, 3, 2, 2, 2, 0, 4, 2, 1, 3, 2, 1, 4, 1, 1, 2, 3, 2, 3, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,5
COMMENTS
a(A064233(n))=0.
A002471(n) - 1 <= a(n) <= A002471(n). [Reinhard Zumkeller, Sep 30 2011]
A224076(n) <= a(A214583(n)+1) for n such that A214583 is defined; a(A064283(n)) = n and a(m) <> n for m < A064283(n). - Reinhard Zumkeller, Mar 31 2013
LINKS
FORMULA
a(n) = SUM(A010051(k)*A010052(n-k+1): 1<=k<=n). [From Reinhard Zumkeller, Nov 05 2009]
G.f.: (Sum_{k>=1} x^prime(k))*(Sum_{k>=1} x^(k^2)). - Ilya Gutkovskiy, Feb 05 2017
EXAMPLE
6=2+4=5+1, thus a(6)=2.
PROG
(Haskell)
a064272 n = sum $
map (a010051 . (n -)) $ takeWhile (< n) $ tail a000290_list
-- Reinhard Zumkeller, Jul 23 2013, Sep 30 2011
CROSSREFS
Cf. A064233.
Cf. A000290.
Sequence in context: A135936 A109707 A214578 * A117479 A200650 A281743
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 23 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 13:24 EST 2023. Contains 367679 sequences. (Running on oeis4.)