login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281743
Expansion of chi(-x) * chi(-x^4) / (chi(-x^3) * chi(-x^12)) in powers of x where chi() is a Ramanujan theta function.
2
1, -1, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 1, -2, 1, 1, -1, 0, 2, -3, 0, 2, -2, 0, 4, -4, 1, 3, -5, 0, 5, -6, 3, 4, -6, 0, 6, -9, 3, 6, -7, 1, 9, -12, 2, 9, -11, 1, 15, -17, 4, 12, -18, 2, 19, -23, 8, 17, -23, 3, 22, -31, 9, 23, -28, 3, 31, -41, 8, 31, -39, 5, 46
OFFSET
0,14
COMMENTS
The sequence generating function appears on the right side of one of Ramanujan's Forty identities.
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of G(x^8) * H(x^3) - x * G(x^3) * H(x^8) in powers of x where G(), H() are Rogers-Ramanujan functions.
Expansion of q^(-5/12) * eta(q) * eta(q^4) * eta(q^6) * eta(q^24) / (eta(q^2) * eta(q^3) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [-1, 0, 0, -1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, ...].
EXAMPLE
G.f. = 1 - x - x^4 + x^6 - x^7 + x^8 + x^9 - x^10 + x^12 - 2*x^13 + ...
G.f. = q^5 - q^17 - q^53 + q^77 - q^89 + q^101 + q^113 - q^125 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^4, x^8] QPochhammer[ -x^3, x^3] QPochhammer[ -x^12, x^12], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, my(A = x * O(x^n)); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)), n))};
CROSSREFS
Sequence in context: A064272 A117479 A200650 * A118404 A089339 A249303
KEYWORD
sign
AUTHOR
Michael Somos, Jan 28 2017
STATUS
approved