login
A281742
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 393", based on the 5-celled von Neumann neighborhood.
4
1, 0, 5, 0, 21, 0, 85, 16, 261, 224, 1365, 16, 5381, 224, 21845, 272, 86021, 4064, 348245, 3600, 1398021, 20704, 5522773, 139536, 22089733, 561120, 88363093, 2231824, 353457413, 8933600, 1413760341, 35791120, 5655040005, 143167456, 22620164181, 572657168
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 05 2024: (Start)
a(n) = 4*a(n-2) + a(n-8) - 4*a(n-10) for n > 23.
G.f.: (57344*x^23 - 69632*x^22 + 6144*x^21 + 5120*x^20 - 11776*x^19 + 3840*x^18 + 2816*x^17 - 1280*x^16 - 640*x^15 + 320*x^14 + 160*x^13 - 80*x^12 - 880*x^11 + 320*x^10 + 160*x^9 - 80*x^8 + 16*x^7 + x^6 + x^4 + x^2 + 1)/(4*x^10 - x^8 - 4*x^2 + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 393; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 28 2017
STATUS
approved