login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118404
Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118407) are equal; also equals the matrix inverse of triangle A118400.
4
1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 1, 0, 0, 2, 1, 1, -1, 0, -2, -3, -1, -1, 0, 1, 2, 5, 4, 1, -1, 1, -1, -3, -7, -9, -5, -1, 1, 0, 0, 4, 10, 16, 14, 6, 1, 1, -1, 0, -4, -14, -26, -30, -20, -7, -1, -1, 0, 1, 4, 18, 40, 56, 50, 27, 8, 1, -1, 1, -1, -5, -22, -58, -96, -106, -77, -35, -9, -1, 1, 0, 0, 6, 27, 80, 154, 202, 183, 112, 44, 10, 1, 1, -1, 0, -6, -33, -107, -234, -356, -385, -295, -156, -54, -11, -1, -1, 0, 1, 6, 39, 140, 341, 590, 741, 680, 451, 210, 65, 12, 1, -1, 1, -1, -7, -45, -179, -481, -931, -1331, -1421, -1131, -661, -275, -77, -13, -1, 1, 0, 0, 8, 52, 224, 660, 1412, 2262, 2752, 2552, 1792, 936, 352, 90, 14, 1
OFFSET
0,14
COMMENTS
Appears to coincide with triangle (5.2) in Lee-Oh (2016), although there is no obvious connection! - N. J. A. Sloane, Dec 07 2016
LINKS
Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
FORMULA
G.f.: A(x,y) = (1+x)^2 / ( (1+x^2) * (1+x + x*y) ).
G.f. of column k: (-1)^k / ( (1+x^2) * (1+x)^(k-1) ) for k>=0.
EXAMPLE
Triangle begins:
1;
1,-1;
-1, 0, 1;
-1, 1,-1,-1;
1, 0, 0, 2, 1;
1,-1, 0,-2,-3,-1;
-1, 0, 1, 2, 5, 4, 1;
-1, 1,-1,-3,-7,-9,-5,-1;
1, 0, 0, 4, 10, 16, 14, 6, 1;
1,-1, 0,-4,-14,-26,-30,-20,-7,-1;
-1, 0, 1, 4, 18, 40, 56, 50, 27, 8, 1;
-1, 1,-1,-5,-22,-58,-96,-106,-77,-35,-9,-1;
1, 0, 0, 6, 27, 80, 154, 202, 183, 112, 44, 10, 1;
1, -1, 0, -6, -33, -107, -234, -356, -385, -295, -156, -54, -11, -1;
-1, 0, 1, 6, 39, 140, 341, 590, 741, 680, 451, 210, 65, 12, 1;
-1, 1, -1, -7, -45, -179, -481, -931, -1331, -1421, -1131, -661, -275, -77, -13, -1;
1, 0, 0, 8, 52, 224, 660, 1412, 2262, 2752, 2552, 1792, 936, 352, 90, 14, 1;
1, -1, 0, -8, -60, -276, -884, -2072, -3674, -5014, -5304, -4344, -2728, -1288, -442, -104, -15, -1;
-1, 0, 1, 8, 68, 336, 1160, 2956, 5746, 8688, 10318, 9648, 7072, 4016, 1730, 546, 119, 16, 1; ...
The matrix square is A118407:
1;
0, 1;
-2, 0, 1;
2,-2, 0, 1;
0, 2,-2, 0, 1;
-2, 0, 2,-2, 0, 1;
4,-2, 0, 2,-2, 0, 1;
-6, 4,-2, 0, 2,-2, 0, 1;
4,-6, 4,-2, 0, 2,-2, 0, 1;
6, 4,-6, 4,-2, 0, 2,-2, 0, 1; ...
in which all columns are equal.
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(-1)^k/((1+x^2)(1+x)^(k-1)), {x, 0, n-k}];
Table[T[n, k], {n, 0, 16}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff((1+x)^2/(1+x^2)/(1+x+x*y +x*O(x^n)), n, x)+y*O(y^k), k, y)}
for(n=0, 16, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A118405 (row sums), A118406 (unsigned row sums), A118407 (matrix square), A118400 (matrix inverse).
Columns or diagonals (modulo offsets): A219977, A011848, A212342, A007598, A005581, A007910.
Sequence in context: A117479 A200650 A281743 * A089339 A249303 A361167
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Apr 27 2006
STATUS
approved