The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212342 Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,3,0,0)(x). 3
 1, 1, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..35. S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016. FORMULA Conjecture: for n>=2, a(n)=(n^2+n-2)/2. - Robert Price, Jun 02 2012 Conjecture: for n>=5, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). G.f.: (1-2*x+2*x^2+x^3-x^4)/(1-x)^3. - Colin Barker, Jul 06 2012 MATHEMATICA QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t, x])))/(1 - t*QQ0[t, x]); q=Simplify[Series[QQ3[t, x], {t, 0, 35}]]; CoefficientList[q /. x -> 0, t] (* Robert Price, Jun 04 2012 *) CROSSREFS Cf. A132337, A212346. A201163 is similar. - Robert Price, Jun 02 2012 Sequence in context: A079509 A132336 A272370 * A080956 A132337 A000096 Adjacent sequences: A212339 A212340 A212341 * A212343 A212344 A212345 KEYWORD nonn,more AUTHOR N. J. A. Sloane, May 09 2012 EXTENSIONS a(10)-a(35) from Robert Price, Jun 02 2012 Added a(0) to correspond to given offset and to be consistent with A212346, Robert Price, Jun 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 14:59 EST 2024. Contains 370305 sequences. (Running on oeis4.)