The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132337 Sum of the integers from 1 to n, excluding the perfect sixth powers. 4
 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 FORMULA Let r = floor(n^(1/6)). Then a(n) = n(n+1)/2 - (r^7/7 + r^6/2 + r^5/2 - r^3/6 + r/42) = A000217(n) - A000540(r). a(n) = A000217(n) - A000540(A178489(n)). - M. F. Hasler, Oct 09 2010 MAPLE A132337 := proc(n) r := floor(n^(1/6)) ; A000217(n)-A000540(r); end proc: seq(A132337(n), n=1..40) ; # R. J. Mathar MATHEMATICA Accumulate[Table[If[IntegerQ[Surd[n, 6]], 0, n], {n, 60}]] (* Harvey P. Dale, Jun 01 2022 *) PROG (PARI) g6(n)=for(x=1, n, r=floor(x^(1/6)); sum6=r^7/7+r^6/2+r^5/2-r^3/6+r/ 42; sn=x* (x+1)/2; print1(sn-sum6", ")) (PARI) A132337(n)=n*(n+1)/2-(1+n=floor(sqrtn(n+.5, 6)))*(2*n+1)*((n^3+2*n^2-1)*n*3+1)*n/42 \\ M. F. Hasler, Oct 09 2010 CROSSREFS Different from A000096. Cf. A132336, A178489. Sequence in context: A272370 A212342 A080956 * A000096 A134189 A109470 Adjacent sequences: A132334 A132335 A132336 * A132338 A132339 A132340 KEYWORD nonn,easy AUTHOR Cino Hilliard, Nov 07 2007 EXTENSIONS Incorrect formula deleted by Jon E. Schoenfield, Jun 12 2010 Incorrect program replaced by R. J. Mathar, Oct 08 2010 Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing. Incorrect linear recurrence removed by Georg Fischer, Apr 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 11:57 EST 2023. Contains 367710 sequences. (Running on oeis4.)