OFFSET
0,3
COMMENTS
Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,0,4,0)(x).
LINKS
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
Anthony Zaleski, Doron Zeilberger, On the Intriguing Problem of Counting (n+1,n+2)-Core Partitions into Odd Parts, arXiv:1712.10072 [math.CO], 2017.
Index entries for linear recurrences with constant coefficients, signature (1,1,2,5).
MATHEMATICA
QQQ4[t, x] = 2/(1 +(t*x-t) *(1+t+2*t^2+5*t^3) + ((1+(t*x-t) *(1+t+2*t^2+5*t^3))^2 -4*t*x)^(1/2)); q = Simplify[Series[QQQ4[t, x], {t, 0, 22}]]; CoefficientList[q /. x -> 0, t] (* Robert Price, Jun 04 2012 *)
LinearRecurrence[{1, 1, 2, 5}, {1, 1, 2, 5}, 34] (* Jean-François Alcover, Sep 21 2017 *)
PROG
(PARI) Vec(1/(1-x-x^2-2*x^3-5*x^4) + O(x^100)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2012
EXTENSIONS
a(10)-a(22) from Robert Price, Jun 04 2012
Edited by N. J. A. Sloane, Feb 17 2018
STATUS
approved