OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Domino
Wikipedia, Domino tiling
Wikipedia, Ferrers diagram
Wikipedia, Mutilated chessboard problem
Wikipedia, Partition (number theory)
Wikipedia, Polyomino
Wikipedia, Young tableau, Diagrams
FORMULA
a(n) = A304718(n,floor(n/2)).
EXAMPLE
a(3) = 5:
: .___. ._.___. .___. ._._. ._._.___.
: |___| | |___| |___| | | | | | |___|
: | | |_| | | | |_|_| |_|_|
: |_| | | |_|_| |___|
: | | |_|
: |_|
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od; expand(
`if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0))
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
a:= n-> coeff(b(2*n$2, []), x, iquo(n, 2)):
seq(a(n), n=0..14);
MATHEMATICA
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
T[n_] := CoefficientList[b[2 n, 2 n, {}], x];
a[n_] := T[n][[Floor[n/2] + 1]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 17 2018
STATUS
approved