OFFSET
0,4
LINKS
Alois P. Heinz, Rows n = 0..25, flattened
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Domino
Wikipedia, Domino tiling
Wikipedia, Ferrers diagram
Wikipedia, Mutilated chessboard problem
Wikipedia, Partition (number theory)
Wikipedia, Young tableau, Diagrams
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
: T(2,0) = 2 : T(2,1) = 2 : T(2,2) = 2 :
: ._. ._._. : .___. ._.___. : .___. .___.___. :
: | | | | | : |___| | |___| : |___| |___|___| :
: |_| |_|_| : | | |_| : |___| :
: | | : |_| : :
: |_| : : :
: : : :
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 2;
3, 5, 5, 3;
5, 9, 14, 9, 5;
7, 18, 28, 28, 18, 7;
11, 29, 63, 62, 63, 29, 11;
15, 51, 109, 150, 150, 109, 51, 15;
22, 79, 206, 293, 380, 293, 206, 79, 22;
30, 126, 342, 590, 787, 787, 590, 342, 126, 30;
42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42;
...
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od; expand(
`if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0))
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
seq(T(n), n=0..12);
MATHEMATICA
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]] ]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i - 1, l] + b[n - i, Min[n - i, i], Append[l, i]]];
T[n_] := CoefficientList[b[2n, 2n, {}], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 17 2018
STATUS
approved