login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304718
Number T(n,k) of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly k horizontally oriented dominoes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 9, 14, 9, 5, 7, 18, 28, 28, 18, 7, 11, 29, 63, 62, 63, 29, 11, 15, 51, 109, 150, 150, 109, 51, 15, 22, 79, 206, 293, 380, 293, 206, 79, 22, 30, 126, 342, 590, 787, 787, 590, 342, 126, 30, 42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42
OFFSET
0,4
LINKS
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
: T(2,0) = 2 : T(2,1) = 2 : T(2,2) = 2 :
: ._. ._._. : .___. ._.___. : .___. .___.___. :
: | | | | | : |___| | |___| : |___| |___|___| :
: |_| |_|_| : | | |_| : |___| :
: | | : |_| : :
: |_| : : :
: : : :
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 2;
3, 5, 5, 3;
5, 9, 14, 9, 5;
7, 18, 28, 28, 18, 7;
11, 29, 63, 62, 63, 29, 11;
15, 51, 109, 150, 150, 109, 51, 15;
22, 79, 206, 293, 380, 293, 206, 79, 22;
30, 126, 342, 590, 787, 787, 590, 342, 126, 30;
42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42;
...
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od; expand(
`if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0))
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
seq(T(n), n=0..12);
MATHEMATICA
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]] ]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i - 1, l] + b[n - i, Min[n - i, i], Append[l, i]]];
T[n_] := CoefficientList[b[2n, 2n, {}], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A304662.
Main diagonal and column k=0 give A000041.
T(n,floor(n/2)) gives A304719.
Sequence in context: A071867 A126337 A322261 * A036355 A228390 A309256
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 17 2018
STATUS
approved