login
A228390
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally or vertically.
11
1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 12, 21, 12, 5, 8, 29, 72, 72, 29, 8, 13, 70, 268, 382, 268, 70, 13, 21, 169, 963, 2104, 2104, 963, 169, 21, 34, 408, 3513, 11449, 17578, 11449, 3513, 408, 34, 55, 985, 12732, 62546, 143072, 143072, 62546, 12732, 985, 55, 89, 2378
OFFSET
1,4
COMMENTS
Table starts
..1...1.....2.......3........5..........8...........13............21
..1...2.....5......12.......29.........70..........169...........408
..2...5....21......72......268........963.........3513.........12732
..3..12....72.....382.....2104......11449........62546........341249
..5..29...268....2104....17578.....143072......1177709.......9646285
..8..70...963...11449...143072....1755243.....21683149.....267157140
.13.169..3513...62546..1177709...21683149....402968942....7458864720
.21.408.12732..341249..9646285..267157140...7458864720..207573951234
.34.985.46274.1862631.79185086.3294926929.138305554175.5784184947686
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 2*a(n-1) +6*a(n-2) -a(n-4)
k=4: a(n) = 4*a(n-1) +9*a(n-2) -5*a(n-3) -4*a(n-4) +a(n-5)
k=5: [order 9]
k=6: [order 11]
k=7: [order 21]
EXAMPLE
Some solutions for n=4 k=4
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..0..0..1....0..0..0..0....0..0..0..1....0..1..0..1....0..0..0..0
..1..0..1..0....0..0..0..0....1..0..0..0....0..0..1..0....1..0..0..0
..0..1..0..0....0..1..0..1....0..1..0..1....0..0..0..0....0..0..0..1
CROSSREFS
Column 1 is A000045
Column 2 is A000129
Sequence in context: A322261 A304718 A036355 * A309256 A095972 A091974
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Aug 21 2013
STATUS
approved