The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109470 Sum of first n noncubes. 0
 2, 5, 9, 14, 20, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2. Note that the sum of noncubes can be a cube: a(6) = 3^3. Note that the sum of noncubes can be a square: a(4) = 3^2, a(7) = 6^2, a(15) = 12^2, a(37) = 28^2, a(69) = 51^2. Primes in this sequence include a(1) = 2, a(2) = 5, a(14) = 127, a(17) = 181, a(62) = 2111, a(73) = 2903, a(77) = 3221. LINKS FORMULA a(n) = Sum_{i=1..n} A007412(i). a(n) = Sum_{i=1..n} (i + floor((i + floor(i^(1/3))^(1/3))). a(n) = A000217(A007412(n)) - Sum_{i=1..floor((A007412(n)^(1/3)))} i^3. a(n) = A000217(A007412(n)) - A000217(floor(A007412(n)^(1/3)))^2. Let R = A007412(n) and S = floor(R^(1/3)); then a(n) = (R*(R+1))/2 - ((S*(S+1))/2)^2. - Gerald Hillier, Dec 21 2008 EXAMPLE a(6) = 2 + 3 + 4 + 5 + 6 + 7 = 27. a(7) = 2 + 3 + 4 + 5 + 6 + 7 + 9 = 36. MATHEMATICA Accumulate[With[{no=60}, Complement[Range[no], Range[Floor[Power[no, (3)^-1]]]^3]]]  (* Harvey P. Dale, Feb 14 2011 *) CROSSREFS Cf. A000537, A007412, A048766, A064524, A086849. Sequence in context: A132337 A000096 A134189 * A112873 A048093 A024669 Adjacent sequences:  A109467 A109468 A109469 * A109471 A109472 A109473 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Aug 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 20:23 EDT 2021. Contains 343920 sequences. (Running on oeis4.)