login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112873
Partial sums of A032378.
6
2, 5, 9, 14, 20, 27, 37, 49, 63, 79, 97, 117, 139, 163, 189, 219, 252, 288, 327, 369, 414, 462, 513, 567, 624, 684, 747, 815, 887, 963, 1043, 1127, 1215, 1307, 1403, 1503, 1607, 1715, 1827, 1943, 2063, 2187, 2317, 2452, 2592, 2737, 2887, 3042, 3202, 3367, 3537
OFFSET
1,1
LINKS
FORMULA
From Vaclav Kotesovec, Oct 13 2024: (Start)
a(3*k*(k+3)/2) = 3*k*(k+1)*(k+2)*(8*k^2+21*k+31)/40.
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - n^2/2 + 13*n^(3/2)/(2^(3/2)*sqrt(3)). (End)
MATHEMATICA
Accumulate[Select[Range[300], !IntegerQ[Surd[#, 3]]&&Divisible[#, Floor[ Surd[ #, 3]]]&]] (* Harvey P. Dale, May 13 2020 *)
PROG
(Magma)
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
[(&+[A032378[j]: j in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
(SageMath)
A032378=flatten([[k*j for j in range((k^2+1), (k^2+3*k+3)+1)] for k in range(1, 15)])
def A112873(n): return sum(A032378[j] for j in range(n+1))
[A112873(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
(Python)
from itertools import count, islice, accumulate
from sympy import integer_nthroot
def A112873_gen(): # generator of terms
return accumulate(filter(lambda x: not x%integer_nthroot(x, 3)[0], (n+(k:=integer_nthroot(n, 3)[0])+int(n>=(k+1)**3-k) for n in count(1))))
A112873_list = list(islice(A112873_gen(), 40)) # Chai Wah Wu, Oct 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 29 2006
STATUS
approved