login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066353 1 + partial sums of A032378. 3
1, 3, 6, 10, 15, 21, 28, 38, 50, 64, 80, 98, 118, 140, 164, 190, 220, 253, 289, 328, 370, 415, 463, 514, 568, 625, 685, 748, 816, 888, 964, 1044, 1128, 1216, 1308, 1404, 1504, 1608, 1716, 1828, 1944, 2064, 2188, 2318, 2453, 2593, 2738, 2888 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A032378 has been inspired by the Concrete Mathematics Casino problem (see reference).
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, p74-76.
LINKS
FORMULA
a(n) = 1 if n = 0, otherwise a(n) = A112873(n) = Sum_{j=1..n} A032378(j).
MATHEMATICA
A032378:= A032378= Table[k*j, {k, 15}, {j, k^2+1, k^2+3*k+3}]//Flatten;
A066353[n_]:= A066353[n]= 1 +Sum[A032378[[j+1]], {j, 0, n-1}];
Table[A066353[n], {n, 0, 100}] (* G. C. Greubel, Jul 20 2023 *)
PROG
(Magma)
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
[n eq 0 select 1 else 1+(&+[A032378[j]: j in [1..n]]): n in [0..100]]; // G. C. Greubel, Jul 20 2023
(SageMath)
A032378=flatten([[k*j for j in range((k^2+1), (k^2+3*k+3)+1)] for k in range(1, 15)])
def A066353(n): return 1 if (n==0) else 1 + sum(A032378[j] for j in range(n))
[A066353(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
CROSSREFS
Sequence in context: A358038 A025706 A025730 * A179653 A117520 A147846
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 22 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 10:47 EDT 2024. Contains 375850 sequences. (Running on oeis4.)