|
|
A066353
|
|
1 + partial sums of A032378.
|
|
3
|
|
|
1, 3, 6, 10, 15, 21, 28, 38, 50, 64, 80, 98, 118, 140, 164, 190, 220, 253, 289, 328, 370, 415, 463, 514, 568, 625, 685, 748, 816, 888, 964, 1044, 1128, 1216, 1308, 1404, 1504, 1608, 1716, 1828, 1944, 2064, 2188, 2318, 2453, 2593, 2738, 2888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A032378 has been inspired by the Concrete Mathematics Casino problem (see reference).
|
|
REFERENCES
|
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, p74-76.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 1 if n = 0, otherwise a(n) = A112873(n) = Sum_{j=1..n} A032378(j).
|
|
MATHEMATICA
|
A032378:= A032378= Table[k*j, {k, 15}, {j, k^2+1, k^2+3*k+3}]//Flatten;
|
|
PROG
|
(Magma)
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
[n eq 0 select 1 else 1+(&+[A032378[j]: j in [1..n]]): n in [0..100]]; // G. C. Greubel, Jul 20 2023
(SageMath)
A032378=flatten([[k*j for j in range((k^2+1), (k^2+3*k+3)+1)] for k in range(1, 15)])
def A066353(n): return 1 if (n==0) else 1 + sum(A032378[j] for j in range(n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|