login
A373570
Triangle read by rows: Coefficients of the polynomials S1(n, x) * EP(n, x), where S1 denote the unsigned Stirling cycle polynomials A132393 and EP the Eulerian polynomials A173018.
0
1, 0, 1, 0, 1, 2, 1, 0, 2, 11, 15, 7, 1, 0, 6, 77, 193, 194, 88, 17, 1, 0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1, 0, 120, 7114, 52083, 131898, 162398, 110214, 43356, 9902, 1242, 72, 1, 0, 720, 88164, 1070824, 4036059, 7141903, 7007314, 4133290, 1519960, 350176, 49162, 3886, 141, 1
OFFSET
0,6
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 2, 1]
[3] [0, 2, 11, 15, 7, 1]
[4] [0, 6, 77, 193, 194, 88, 17, 1]
[5] [0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1]
MAPLE
PolyProd(((n, k) -> abs(Stirling1(n, k))), combinat:-eulerian1, 7); # Using PolyProd from A373657.
CROSSREFS
Cf. A173018, A132393, A000142, A373657, A001044 (row sums).
Sequence in context: A339780 A199469 A266832 * A307772 A225203 A136255
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jun 16 2024
STATUS
approved