login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339780
Triangle read by rows: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves using exactly k colors.
7
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 7, 9, 4, 0, 3, 24, 63, 68, 26, 0, 7, 91, 412, 812, 720, 236, 0, 13, 354, 2673, 8512, 13100, 9672, 2752, 0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208, 0, 73, 6504, 117365, 814184, 2782970, 5194580, 5408620, 2953792, 660032
OFFSET
0,9
COMMENTS
Homeomorphically irreducible trees are trees without vertices of degree 2. All non-leaf nodes then have degree >= 3.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 2, 7, 9, 4;
0, 3, 24, 63, 68, 26;
0, 7, 91, 412, 812, 720, 236;
0, 13, 354, 2673, 8512, 13100, 9672, 2752;
0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208;
...
PROG
(PARI) \\ here U(n, k) is A339779 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + k*x*g - g^2)}
M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
{ my(T=M(8)); for(n=1, #T~, print(T[n, 1..n])); }
CROSSREFS
Columns k=1..4 are A007827(n>0), A339785, A339786, A339787.
Main diagonal is A000311(n>0).
Row sums are A339781.
Cf. A319376 (planted), A339650 (degree <= 3), A339779.
Sequence in context: A029584 A318931 A266878 * A199469 A266832 A373570
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 16 2020
STATUS
approved