OFFSET
1,1
COMMENTS
Numbers m such that tau(m) = tau(m + 1) / 2 = tau(m + 2) / 3, where tau(k) = the number of divisors of k (A000005).
Corresponding values of tau(a(n)): 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n))]: [2, 4, 6], [2, 4, 6], [2, 4, 6], [2, 4, 6], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], ...
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
tau(61) = 2, tau(62) = 4, tau(63) = 6.
MATHEMATICA
Select[Range[6000], Equal @@ (DivisorSigma[0, # + {0, 1, 2}]/{1, 2, 3}) &] (* Amiram Eldar, Dec 16 2020 *)
PROG
(Magma) [m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 3]
(PARI) isok(m) = my(nb = numdiv(m)); (numdiv(m+1) == 2*nb) && (numdiv(m+2) == 3*nb); \\ Michel Marcus, Dec 18 2020
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Dec 16 2020
STATUS
approved