login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339778
Numbers m such that numbers m, m + 1 and m + 2 have k, 2k and 3k divisors respectively.
4
61, 73, 277, 421, 458, 493, 583, 1234, 1393, 1418, 1658, 1909, 1954, 2066, 2138, 2234, 2329, 2386, 2533, 2594, 2773, 2797, 2846, 3013, 3073, 3265, 3394, 3841, 4322, 4333, 4538, 4586, 4633, 4717, 4754, 4766, 5029, 5223, 5245, 5342, 5378, 5554, 5893, 5906, 6169
OFFSET
1,1
COMMENTS
Numbers m such that tau(m) = tau(m + 1) / 2 = tau(m + 2) / 3, where tau(k) = the number of divisors of k (A000005).
Corresponding values of tau(a(n)): 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n))]: [2, 4, 6], [2, 4, 6], [2, 4, 6], [2, 4, 6], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], ...
LINKS
EXAMPLE
tau(61) = 2, tau(62) = 4, tau(63) = 6.
MATHEMATICA
Select[Range[6000], Equal @@ (DivisorSigma[0, # + {0, 1, 2}]/{1, 2, 3}) &] (* Amiram Eldar, Dec 16 2020 *)
PROG
(Magma) [m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 3]
(PARI) isok(m) = my(nb = numdiv(m)); (numdiv(m+1) == 2*nb) && (numdiv(m+2) == 3*nb); \\ Michel Marcus, Dec 18 2020
CROSSREFS
Subsequence of A063446.
Sequence in context: A260808 A141457 A112998 * A328160 A118162 A217076
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Dec 16 2020
STATUS
approved