The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339777 Numbers m such that tau(m) = tau(m + 1) + 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005). 2
 8, 110888, 149768, 1119363, 1172888, 2676495, 3143528, 4782968, 5895183, 8596623, 9168783, 15896168, 19114383, 28174863, 48052623, 50523663, 58186383, 72641528, 82664463, 98168463, 113465103, 139523343, 178810383, 208860303, 223681935, 230675343, 248755983, 249260943 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding values of tau(a(n)): 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ... Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) - 1, tau(a(n))]: [4, 3, 4], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], ... a(n) is one less than a perfect square. - David A. Corneth, Dec 29 2020 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 EXAMPLE tau(8) = 4, tau(9) = 3, tau(10) = 4. MATHEMATICA d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 + 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *) Position[Partition[DivisorSigma[0, Range[59*10^5]], 3, 1], _?(#[[1]]==#[[2]]+1==#[[3]]&), 1, Heads->False]//Flatten (* Harvey P. Dale, May 25 2023 *) PROG (Magma) [m: m in [2..10^6] | #Divisors(m + 1) + 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)] (PARI) isok(m) = my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb-1); \\ Michel Marcus, Dec 18 2020 CROSSREFS Cf. A000005, A339776. Subsequence of A005563. Intersection of A062832 and A068208. Sequence in context: A036535 A259167 A048565 * A269877 A123276 A308138 Adjacent sequences: A339774 A339775 A339776 * A339778 A339779 A339780 KEYWORD nonn AUTHOR Jaroslav Krizek, Dec 16 2020 EXTENSIONS More terms from Amiram Eldar, Dec 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 03:10 EDT 2024. Contains 373492 sequences. (Running on oeis4.)