login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339650
Triangle read by rows: T(n,k) is the number of trees with n leaves of exactly k colors and all non-leaf nodes having degree 3.
7
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 6, 3, 0, 1, 10, 30, 36, 15, 0, 2, 27, 140, 310, 300, 105, 0, 2, 74, 663, 2376, 3990, 3150, 945, 0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395, 0, 6, 710, 15642, 123508, 462735, 925890, 1018710, 582120, 135135
OFFSET
0,9
COMMENTS
See table 4.2 in the Johnson reference.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012.
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A339649(n,i).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 4, 6, 3;
0, 1, 10, 30, 36, 15;
0, 2, 27, 140, 310, 300, 105;
0, 2, 74, 663, 2376, 3990, 3150, 945;
0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395;
...
PROG
(PARI) \\ here U(n, k) is column k of A339649 as a vector.
R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
CROSSREFS
Columns k=1..4 are A129860, A220829, A220830, A220831.
Main diagonal is A001147(n-2) for n >= 2.
Row sums are A339651.
Cf. A319541 (rooted), A339649, A339780.
Sequence in context: A295683 A165519 A266972 * A266493 A075374 A293024
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 14 2020
STATUS
approved