The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053016 Number of faces of Platonic solids in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron. 27
4, 6, 8, 12, 20 (list; graph; refs; listen; history; text; internal format)



Or, numbers of vertices of Platonic solids in the order tetrahedron, octahedron, cube, icosahedron, dodecahedron.

It appears that the stereographic projection of the Platonic solids requires respectively 4, 6, 8, 6, 10, different colors to represent them. - Eric Desbiaux, Feb 15 2009


H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover, NY, 1973.


Table of n, a(n) for n=1..5.

S. Alejandre, Studying Polyhedra

P. Alfeld, The Platonic Solids

D. M. Cahir, Platonic Solids

M. Chaplin, The Platonic Solids

D. Eberly, Platonic Solids

T. Eveilleau, Les solides de Platon

W. Fendt, The Platonic Solids (in German)

F. Fernandez, Platonic Solids

Z. Fiedorowicz, V-E+F=2

D. A. Fontaine, The Five Platonic Solids

FreeDictionary.com, Platonic solid

Polyhedra.mathmos.net, The Platonic Solids

E. S. Rowland, Regular Polyhedra

A. Ruediger, The Platonic Solids

L. Stemkoski, Platonic Solids

G. Tulloue, Plato's Polyhedra

University of St. Andrews, The five Platonic solids

Utah State University, Platonic Solids

Visual Geometry Pages, Platonic Solids

Eric Weisstein's World of Mathematics, Platonic Solid.

D. Wells, Regular Polyhedra

Wolfram Research, Polyhedron Explorer

W. Wu, The Platonic Solids

Anonymous, Polyhedra

Anonymous, The Platonic Solids


Cf. A063927, A063722, A063723.

Sequence in context: A178549 A244408 A023374 * A078785 A308875 A323059

Adjacent sequences:  A053013 A053014 A053015 * A053017 A053018 A053019




Jeffrey Keller (jeff(AT)auctionflow.com), Feb 24 2000



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 04:31 EDT 2020. Contains 335673 sequences. (Running on oeis4.)