The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093986 a(1) = 1, a(2) = 1, a(n+1) = 2n*a(n) - a(n-1). Symmetrically a(n) = (a(n-1) + a(n+1))/((n-1) + (n+1)). 5
 1, 1, 3, 17, 133, 1313, 15623, 217409, 3462921, 62115169, 1238840459, 27192374929, 651378157837, 16908639728833, 472790534249487, 14166807387755777, 452865045873935377, 15383244752326047041, 553343946037863758099, 21011686704686496760721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..200 The Wolfram Functions Site, BesselJ[nu,z], Recurrence identities FORMULA a(n) = ((Y_0(1) - Y_1(1))*J_n(1) + (J_1(1)-J_0(1))*Y_n(1))*Pi/2, where J_n(x) and Y_n(x) are the Bessel function of the first and second kind. - Vladimir Reshetnikov, May 21 2013 a(n) ~ sqrt(Pi/2)*(BesselJ(0,1)-BesselJ(1,1)) * 2^n*n^(n-1/2)*exp(-n). - Vaclav Kotesovec, Aug 13 2013 a(-n) = (-1)^n * a(n). - Michael Somos, May 10 2014 0 = a(n)*(a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(a(n+2)). - Michael Somos, May 10 2014 MAPLE a[1]:=1:a[2]:=1:for n from 3 to 21 do a[n]:=2*(n-1)*a[n-1]-a[n-2] od: seq(a[n], n=1..21); # Emeric Deutsch, Apr 17 2005 # second Maple program: a:= proc(n) a(n):= `if`(n<2, 1, a(n-1)*(2*n-2)-a(n-2)) end: seq(a(n), n=1..25); # Alois P. Heinz, May 21 2013 MATHEMATICA Table[DifferenceRoot[Function[{a, n}, {a[n] - 2*(n + 1)*a[n + 1] + a[n + 2] == 0, a[0] == 1, a[1] == 1}]][n], {n, 1, 20}] Table[FullSimplify[((BesselY[0, 1] - BesselY[1, 1]) BesselJ[n, 1] + (BesselJ[1, 1] - BesselJ[0, 1]) BesselY[n, 1]) Pi/2], {n, 1, 20}] (* Vladimir Reshetnikov, May 21 2013 *) RecurrenceTable[{a[1]==a[2]==1, a[n+1]==2n a[n]-a[n-1]}, a, {n, 20}] (* Harvey P. Dale, Jan 17 2021 *) CROSSREFS Cf. A093985. Sequence in context: A305819 A163684 A363135 * A192459 A362748 A055214 Adjacent sequences: A093983 A093984 A093985 * A093987 A093988 A093989 KEYWORD nonn AUTHOR Amarnath Murthy, May 22 2004 EXTENSIONS More terms from Emeric Deutsch, Apr 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 13:49 EDT 2023. Contains 363180 sequences. (Running on oeis4.)