OFFSET
1,3
LINKS
FORMULA
a(n) = ((Y_0(1) - Y_1(1))*J_n(1) + (J_1(1)-J_0(1))*Y_n(1))*Pi/2, where J_n(x) and Y_n(x) are the Bessel function of the first and second kind. - Vladimir Reshetnikov, May 21 2013
a(n) ~ sqrt(Pi/2)*(BesselJ(0,1)-BesselJ(1,1)) * 2^n*n^(n-1/2)*exp(-n). - Vaclav Kotesovec, Aug 13 2013
a(-n) = (-1)^n * a(n). - Michael Somos, May 10 2014
0 = a(n)*(a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(a(n+2)). - Michael Somos, May 10 2014
MAPLE
a[1]:=1:a[2]:=1:for n from 3 to 21 do a[n]:=2*(n-1)*a[n-1]-a[n-2] od: seq(a[n], n=1..21); # Emeric Deutsch, Apr 17 2005
# second Maple program:
a:= proc(n) a(n):= `if`(n<2, 1, a(n-1)*(2*n-2)-a(n-2)) end:
seq(a(n), n=1..25); # Alois P. Heinz, May 21 2013
MATHEMATICA
Table[DifferenceRoot[Function[{a, n}, {a[n] - 2*(n + 1)*a[n + 1] + a[n + 2] == 0, a[0] == 1, a[1] == 1}]][n], {n, 1, 20}]
Table[FullSimplify[((BesselY[0, 1] - BesselY[1, 1]) BesselJ[n, 1] + (BesselJ[1, 1] - BesselJ[0, 1]) BesselY[n, 1]) Pi/2], {n, 1, 20}] (* Vladimir Reshetnikov, May 21 2013 *)
RecurrenceTable[{a[1]==a[2]==1, a[n+1]==2n a[n]-a[n-1]}, a, {n, 20}] (* Harvey P. Dale, Jan 17 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 22 2004
EXTENSIONS
More terms from Emeric Deutsch, Apr 17 2005
STATUS
approved