login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093986
a(1) = 1, a(2) = 1, a(n+1) = 2n*a(n) - a(n-1). Symmetrically a(n) = (a(n-1) + a(n+1))/((n-1) + (n+1)).
5
1, 1, 3, 17, 133, 1313, 15623, 217409, 3462921, 62115169, 1238840459, 27192374929, 651378157837, 16908639728833, 472790534249487, 14166807387755777, 452865045873935377, 15383244752326047041, 553343946037863758099, 21011686704686496760721
OFFSET
1,3
FORMULA
a(n) = ((Y_0(1) - Y_1(1))*J_n(1) + (J_1(1)-J_0(1))*Y_n(1))*Pi/2, where J_n(x) and Y_n(x) are the Bessel function of the first and second kind. - Vladimir Reshetnikov, May 21 2013
a(n) ~ sqrt(Pi/2)*(BesselJ(0,1)-BesselJ(1,1)) * 2^n*n^(n-1/2)*exp(-n). - Vaclav Kotesovec, Aug 13 2013
a(-n) = (-1)^n * a(n). - Michael Somos, May 10 2014
0 = a(n)*(a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(a(n+2)). - Michael Somos, May 10 2014
MAPLE
a[1]:=1:a[2]:=1:for n from 3 to 21 do a[n]:=2*(n-1)*a[n-1]-a[n-2] od: seq(a[n], n=1..21); # Emeric Deutsch, Apr 17 2005
# second Maple program:
a:= proc(n) a(n):= `if`(n<2, 1, a(n-1)*(2*n-2)-a(n-2)) end:
seq(a(n), n=1..25); # Alois P. Heinz, May 21 2013
MATHEMATICA
Table[DifferenceRoot[Function[{a, n}, {a[n] - 2*(n + 1)*a[n + 1] + a[n + 2] == 0, a[0] == 1, a[1] == 1}]][n], {n, 1, 20}]
Table[FullSimplify[((BesselY[0, 1] - BesselY[1, 1]) BesselJ[n, 1] + (BesselJ[1, 1] - BesselJ[0, 1]) BesselY[n, 1]) Pi/2], {n, 1, 20}] (* Vladimir Reshetnikov, May 21 2013 *)
RecurrenceTable[{a[1]==a[2]==1, a[n+1]==2n a[n]-a[n-1]}, a, {n, 20}] (* Harvey P. Dale, Jan 17 2021 *)
CROSSREFS
Cf. A093985.
Sequence in context: A305819 A163684 A363135 * A192459 A362748 A055214
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 22 2004
EXTENSIONS
More terms from Emeric Deutsch, Apr 17 2005
STATUS
approved