login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128709
O.g.f.: A(x) = 1/(1-1*x/(1-3*x/(1-5*x/(1-7*x/(1-...-(2n-1)*x/(1-...)))))) (continued fraction).
6
1, 1, 4, 31, 364, 5746, 113944, 2719291, 75843724, 2420160286, 86941080904, 3471911602006, 152562875644984, 7315129181611876, 380045172886143664, 21266347877729314771, 1275148311699896290444, 81563275661324271278566
OFFSET
0,3
COMMENTS
Hankel transform is A168440. - Paul Barry, Nov 25 2009
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*A053979(n,k). - Philippe Deléham, Mar 24 2007
a(n) = Sum_{k=0..n} A094344(n,k)*3^(n-k). - Philippe Deléham, Mar 27 2007
G.f.: 1/(1-x-3x^2/(1-8x-35x^2/(1-16x-99x^2/(1-24x-195x^2/(1-32x-323x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = top left term of M^n, n > 0; M = the infinite square production matrix:
1, 3, 0, 0, ...
1, 3, 5, 0, ...
1, 3, 5, 7, ...
...
Also, a(n+1) = sum of top row terms of M^n. Example: top row of M^3 = (31, 93, 135, 105, 0, 0, 0, ...), where a(3) = 31 and a(4) = 364 = (31 + 93 + 135 + 105). - Gary W. Adamson, Jul 14 2011
G.f.: 1/T(0) where T(k) = 1 - x*(4*k+1)/(1 - x*(4*k+3)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: G(0), where G(k) = 1 - x*(2*k+1)/(x*(2*k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 05 2013
a(n) ~ 2^(2*n - 1/2) * (n-1)! / Pi. - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 4x^2 + 31x^3 + 364x^4 + 5746x^5 + ...;
A(x) = 1/(1 - x*(1 + 3x + 24x^2 + 297x^3 + 4896x^4 + ...));
A(x) = 1/(1 - x/(1 - 3x*(1 + 5x + 60x^2 + 1035x^3 + 22500x^4 + ...)));
A(x) = 1/(1 - x/(1 - 3x/(1 - 5x*(1 + 7x + 112x^2 + 2485x^3 + ...)))).
MATHEMATICA
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1]-1)*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
PROG
(PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=0, n, CF=1/(1-(2*n-2*k+1)*x*CF)); polcoeff(CF, n, x)}
CROSSREFS
Sequence in context: A016036 A322626 A000314 * A138860 A266757 A369737
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 23 2007
STATUS
approved