login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128711
Expansion of phi(x) * psi(x^4) * phi(-x^4)^4 in powers of x where phi(), psi() are Ramanujan theta functions.
3
1, 2, 0, 0, -5, -14, 0, 0, 2, 34, 0, 0, 25, -28, 0, 0, -28, 0, 0, 0, -46, -14, 0, 0, 49, 4, 0, 0, 68, 82, 0, 0, 0, -62, 0, 0, -142, 50, 0, 0, -11, -158, 0, 0, 146, 0, 0, 0, -94, 70, 0, 0, 0, 178, 0, 0, 98, 0, 0, 0, 75, -92, 0, 0, -28, -62, 0, 0, -238, -206, 0
OFFSET
0,2
COMMENTS
Number 48 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Mar 14 2012
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q^2) * eta(q^4))^5 / (eta(q) * eta(q^8))^2 in powers of q. - Michael Somos, Mar 14 2012
Euler transform of period 8 sequence [ 2, -3, 2, -8, 2, -3, 2, -6, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^e if p == 5, 7 (mod 8), b(p^e) = b(p) * b(p^(e-1)) - p^2 * b(p^(e-2)) if p == 1, 3 (mod 8) where b(p) = 2*(2*x^2 - p) * (-1)^((p-1)/2) and p = x^2 + 2*y^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(15/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^k)^6 * (1 + x^k)^8 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2.
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A128712(n). a(4*n + 1) = 2 * A128713(n).
EXAMPLE
G.f. = 1 + 2*x - 5*x^4 - 14*x^5 + 2*x^8 + 34*x^9 + 25*x^12 - 28*x^13 + ...
G.f. = q + 2*q^3 - 5*q^9 - 14*q^11 + 2*q^17 + 34*q^19 + 25*q^25 - 28*q^27 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^4])^5 / (QPochhammer[ x] QPochhammer[ x^8])^2, {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
PROG
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%8>4, if( e%2, 0, p^e), for( i=1, sqrtint(p\2), if( issquare(p - 2*i^2, &x), break)); a0=1; a1=y=2*(2*x^2 - p) * (-1)^((p-1)/2); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^4 + A))^5 / (eta(x + A) * eta(x^8 + A))^2, n))};
CROSSREFS
Sequence in context: A281190 A275619 A249132 * A132710 A106512 A181229
KEYWORD
sign
AUTHOR
Michael Somos, Mar 24 2007
STATUS
approved