login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132710
Infinitesimal generator for a diagonally-shifted Lah matrix, unsigned A105278, related to n! Laguerre(n,-x,1).
4
0, 2, 0, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 0
OFFSET
0,2
COMMENTS
Analogous to the infinitesimal generators of A132681 and A132792.
The matrix T begins
0;
2, 0;
0, 6, 0;
0, 0, 12 0;
0, 0, 0, 20, 0;
Along the nonvanishing diagonal the n-th term is (n+2)*(n+1).
Let LM(t) = exp(t*T) = lim_{n->infinity} (1 + t*T/n)^n.
Shifted Lah matrix = [bin(n+1,k+1)*(n)!/(k)! ] = LM(1) = exp(T). Truncating the series gives the n X n submatrices. In fact, the submatrices of T are nilpotent with [Tsub_n]^(n+1) = 0 for n=0,1,2,....
Inverse shifted Lah matrix = LM(-1) = exp(-T)
Umbrally shifted Lah[b(.)] = exp(b(.)*T) = [ binomial(n+1,k+1)*(n)!/(k)! * b(n-k) ]
A(j) = T^j / j! equals the matrix [binomial(n+1,k+1)*(n)!/(k)! * delta(n-k-j)] where delta(n) = 1 if n=0 and vanishes otherwise (Kronecker delta); i.e. A(j) is a matrix with all the terms 0 except for the j-th lower (or main for j=0) diagonal which equals that of the Lah matrix. Hence the A(j)'s form a linearly independent basis for all matrices of the form [binomial(n+1,k+1) * (n)! / (k)! * d(n-k)].
For sequences with b(0) = 1, umbrally,
LM[b(.)] = exp(b(.)*T) = [ bin(n+1,k+1)*(n)!/(k)! * b(n-k) ] .
[LM[b(.)]]^(-1) = exp(c(.)*T) = [ bin(n+1,k+1)*(n)!/(k)! * c(n-k) ] where c = LPT(b) with LPT the list partition transform of A133314. Or,
[LM[b(.)]]^(-1) = exp[LPT(b(.))*T] = LPT[LM(b(.))] = LM[LPT(b(.))] = LM[c(.)] .
The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or e.g.f.'s EA(x) and EB(x).
1) b(0) = 0, b(n) = (n+1)*(n) * a(n-1),
2) B(x) = x * D^2 * x^2 A(x)
3) B(x) = x * 2 *Lag(2,-:xD:,0) A(x)
4) EB(x) = D * x^2 EA(x)
where D is the derivative w.r.t. x, (:xD:)^j = x^j*D^j and Lag(n,x,m) is the associated Laguerre polynomial of order m.
The exponentiated operator can be characterized (with loose notation) as
5) exp(t*T) * a = LM(t) * a = [sum(k=0,...,n) bin(n+1,k+1) * n!/k! t^(n-k) * a(k)] = [ t^n * n! * Lag(n,-a(.)/t,1) ], a vector array.
With t=1 and a(k) = (-x)^k, then LM(1) * a = [ n! * Laguerre(n,x,1) ], a vector array with index n .
6) exp(t*T) EA(x) = EB(x) = EA[ x / (1-x*t) ] / (1-x*t)^2
LINKS
G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4
M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
FORMULA
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R*L^2*R^2 in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1). - Tom Copeland, Oct 25 2012
MATHEMATICA
Table[PadLeft[{n*(n-1), 0}, n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 30 2014 *)
CROSSREFS
Sequence in context: A275619 A249132 A128711 * A106512 A181229 A364233
KEYWORD
easy,nonn,tabl
AUTHOR
Tom Copeland, Nov 15 2007, Nov 16 2007, Nov 27 2007
STATUS
approved